Question Answering
Transformers
Safetensors
File size: 6,431 Bytes
7bf4b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from pathlib import Path
import re
import torch
import openai
from functools import partial
import time
import multiprocessing
from sentence_transformers import SentenceTransformer
from concurrent.futures import ProcessPoolExecutor
from torch.multiprocessing import set_start_method
import os
from transformers import AutoModel, AutoTokenizer, AutoConfig
from Reranking.rerankers.node import Contriever
import torch.nn as nn

# Global cache to store loaded models
MODEL_CACHE = {}


def get_openai_embedding(text: str, 
                         model: str = "text-embedding-ada-002",
                         max_retry: int = 10,
                         sleep_time: int = 0) -> torch.FloatTensor:
    """
    Get the OpenAI embedding for a given text.

    Args:
        text (str): The input text to be embedded.
        model (str): The model to use for embedding. Default is "text-embedding-ada-002".
        max_retry (int): Maximum number of retries in case of an error. Default is 1.
        sleep_time (int): Sleep time between retries in seconds. Default is 0.

    Returns:
        torch.FloatTensor: The embedding of the input text.
    """
    assert isinstance(text, str), f'text must be str, but got {type(text)}'
    assert len(text) > 0, 'text to be embedded should be non-empty'
    
    client = openai.OpenAI()
    
    for _ in range(max_retry):
        try:
            emb = client.embeddings.create(input=[text], model=model)
            return torch.FloatTensor(emb.data[0].embedding).view(1, -1)
        except openai.BadRequestError as e:
            print(f'{e}')
            e = str(e)
            ori_length = len(text.split(' '))
            match = re.search(r'maximum context length is (\d+) tokens, however you requested (\d+) tokens', e)
            if match is not None:
                max_length = int(match.group(1))
                cur_length = int(match.group(2))
                ratio = float(max_length) / cur_length
                for reduce_rate in range(9, 0, -1):
                    shorten_text = text.split(' ')
                    length = int(ratio * ori_length * (reduce_rate * 0.1))
                    shorten_text = ' '.join(shorten_text[:length])
                    try:
                        emb = client.embeddings.create(input=[shorten_text], model=model)
                        print(f'length={length} works! reduce_rate={0.1 * reduce_rate}.')
                        return torch.FloatTensor(emb.data[0].embedding).view(1, -1)
                    except: 
                        continue
        except (openai.RateLimitError, openai.APITimeoutError) as e:
            print(f'{e}, sleep for {sleep_time} seconds')
            time.sleep(sleep_time)
    raise RuntimeError("Failed to get embedding after maximum retries")


def get_openai_embeddings(texts: list, 
                          model: str = "text-embedding-ada-002",
                          n_max_nodes: int = 5) -> torch.FloatTensor:
    """
    Get embeddings for a list of texts using OpenAI's embedding model.

    Args:
        texts (list): List of input texts to be embedded.
        n_max_nodes (int): Maximum number of parallel processes. Default is 5.
        model (str): The model to use for embedding. Default is "text-embedding-ada-002".

    Returns:
        torch.FloatTensor: A tensor containing embeddings for all input texts.
    """
    assert isinstance(texts, list), f'texts must be list, but got {type(texts)}'
    assert all([len(s) > 0 for s in texts]), 'every string in the `texts` list to be embedded should be non-empty'

    processes = min(len(texts), n_max_nodes)
    ada_encoder = partial(get_openai_embedding, model=model)
    
    with multiprocessing.Pool(processes=processes) as pool:
        results = pool.map(ada_encoder, texts)

    results = torch.cat(results, dim=0)
    return results


# Define the batch processing function at global scope
def process(text, encoder):

    embeddings = encoder.encode(text, convert_to_tensor=True)
    return embeddings


def get_sentence_transformer_embeddings(texts: list, 
                                        model_name: str = "all-mpnet-base-v2") -> torch.FloatTensor:
    
    assert isinstance(texts, list), f'texts must be list, but got {type(texts)}'
    assert all([len(s) > 0 for s in texts]), 'every string in the `texts` list to be embedded should be non-empty'

    # only load the model once
    if model_name not in MODEL_CACHE:
        # Use partial to pass the model name to the get_embedding function
        encoder = SentenceTransformer(model_name)
        MODEL_CACHE[model_name] = encoder
    else:
        # print(f"Using cached model: {model_name}")
        encoder = MODEL_CACHE[model_name]

    # if os.name == 'posix': 
    #     set_start_method('spawn', force=True)
    
    results = process(texts, encoder=encoder)

    results = results.cpu()

    # Free up CUDA memory
    torch.cuda.empty_cache()

    return results


def get_contriever(dataset_name) -> torch.FloatTensor:    
    # Use partial to pass the model name to the get_embedding function
    contriever_name = 'facebook/contriever'
    encoder = AutoModel.from_pretrained(contriever_name)
    tokenizer = AutoTokenizer.from_pretrained(contriever_name)
    emb_dim = 768
    
    encoder = Contriever(encoder, emb_dim=emb_dim)
    current_file = Path(__file__).resolve()
    project_root = current_file.parents[3]
    checkpoint_path = f"{project_root}/Reasoning/text_retrievers/model_checkpoint/contriever/{dataset_name}/best_20250204.pth"
    checkpoint = torch.load(checkpoint_path)
    encoder.load_state_dict(checkpoint)
    encoder.to('cuda')
    encoder.eval()

    return encoder, tokenizer


@torch.no_grad()
def get_contriever_embeddings(texts, encoder, tokenizer, device) -> torch.FloatTensor:
    if isinstance(texts, str):
        texts = [texts]

    
    text_enc = tokenizer(texts, padding='max_length', truncation=True, return_tensors='pt', max_length=512)
    
    input_ids = text_enc['input_ids'].to(device)
    attention_mask = text_enc['attention_mask'].to(device)
    token_type_ids = text_enc.get('token_type_ids', None)
    if token_type_ids is not None:
        token_type_ids = token_type_ids.to(device)
    embeddings = encoder.get_text_emb(input_ids, attention_mask, token_type_ids)

    embeddings = embeddings.cpu()
    # Free up CUDA memory
    torch.cuda.empty_cache()

    return embeddings