File size: 9,101 Bytes
7bf4b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import os.path as osp
import subprocess
from typing import Any, Union, List, Dict, Optional
from collections import defaultdict
import torch
from tqdm import tqdm
from colbert.infra import Run, RunConfig, ColBERTConfig
from colbert.data import Queries, Collection
from colbert import Indexer, Searcher
from models.model import ModelForSTaRKQA
from stark_qa import load_qa
class Colbertv2(ModelForSTaRKQA):
"""
ColBERTv2 Model for STaRK QA.
This model integrates the ColBERTv2 dense retrieval model to rank candidates based on their relevance
to a query from a question-answering dataset.
"""
url = "https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz"
def __init__(self,
skb: Any,
dataset_name: str,
human_generated_eval: bool,
add_rel: bool = False,
download_dir: str = 'output',
save_dir: str = 'output/colbertv2.0',
nbits: int = 2,
k: int = 100):
"""
Initialize the ColBERTv2 model with the given knowledge base and parameters.
Args:
skb (Any): The knowledge base containing candidate documents.
dataset_name (str): The name of the dataset being used.
human_generated_eval (bool): Whether to use human-generated queries for evaluation.
add_rel (bool, optional): Whether to add relational information to the document. Defaults to False.
download_dir (str, optional): Directory where the ColBERTv2 model is downloaded. Defaults to 'output'.
save_dir (str, optional): Directory where the experiment output is saved. Defaults to 'output/colbertv2.0'.
nbits (int, optional): Number of bits for indexing. Defaults to 2.
k (int, optional): Number of top candidates to retrieve. Defaults to 100.
"""
super(Colbertv2, self).__init__(skb)
self.k = k
self.nbits = nbits
query_tsv_name = 'query_hg.tsv' if human_generated_eval else 'query.tsv'
self.exp_name = dataset_name + '_hg' if human_generated_eval else dataset_name
self.save_dir = save_dir
self.download_dir = download_dir
self.experiments_dir = './experiments'
self.model_ckpt_dir = osp.join(self.download_dir, 'colbertv2.0')
self.query_tsv_path = osp.join(self.save_dir, query_tsv_name)
self.doc_tsv_path = osp.join(self.save_dir, 'doc.tsv')
self.index_ckpt_path = osp.join(self.save_dir, 'index.faiss')
self.ranking_path = osp.join(self.save_dir, 'ranking.tsv')
os.makedirs(self.download_dir, exist_ok=True)
os.makedirs(self.experiments_dir, exist_ok=True)
# Load the question-answer dataset and check for required files
qa_dataset = load_qa(dataset_name, human_generated_eval=human_generated_eval)
self._check_query_csv(qa_dataset, self.query_tsv_path)
self._check_doc_csv(skb, self.doc_tsv_path, add_rel)
# Download and set up the ColBERTv2 model
self._download()
# Load the queries and documents into ColBERTv2 format
self.queries = Queries(self.query_tsv_path)
self.collection = Collection(self.doc_tsv_path)
# Prepare the indexer and build the index
self._prepare_indexer()
# Run the model and store the results
self.score_dict = self.run_all()
def _check_query_csv(self, qa_dataset: Any, query_tsv_path: str) -> None:
"""
Check if the query TSV file exists; if not, create it from the QA dataset.
Args:
qa_dataset (Any): The question-answer dataset.
query_tsv_path (str): Path to the query TSV file.
"""
if not osp.exists(query_tsv_path):
queries = {qa_dataset[i][1]: qa_dataset[i][0].replace('\n', ' ')
for i in range(len(qa_dataset))}
lines = [f"{qid}\t{q}" for qid, q in queries.items()]
with open(query_tsv_path, 'w') as file:
file.write('\n'.join(lines))
else:
print(f'Loaded existing queries from {query_tsv_path}')
def _check_doc_csv(self, skb: Any, doc_tsv_path: str, add_rel: bool) -> None:
"""
Check if the document TSV file exists; if not, create it from the knowledge base.
Args:
skb (Any): The knowledge base containing candidate documents.
doc_tsv_path (str): Path to the document TSV file.
add_rel (bool): Whether to add relational information to the documents.
"""
indices = skb.candidate_ids
self.docid2pid = {idx: i for i, idx in enumerate(indices)}
self.pid2docid = {i: idx for i, idx in enumerate(indices)}
if not osp.exists(doc_tsv_path):
corpus = {self.docid2pid[idx]: skb.get_doc_info(idx, add_rel=add_rel, compact=True)
for idx in tqdm(indices, desc="Gathering documents")}
lines = [f"{idx}\t{doc}" for idx, doc in corpus.items()]
with open(doc_tsv_path, 'w') as file:
file.write('\n'.join(lines))
else:
print(f'Loaded existing documents from {doc_tsv_path}')
def _download(self) -> None:
"""
Download the ColBERTv2 model if not already available.
"""
if not osp.exists(osp.join(self.download_dir, 'colbertv2.0')):
# Download the ColBERTv2 checkpoint
download_command = f"wget {self.url} -P {self.download_dir}"
subprocess.run(download_command, shell=True, check=True)
# Extract the downloaded tar.gz file
tar_command = f"tar -xvzf {osp.join(self.download_dir, 'colbertv2.0.tar.gz')} -C {self.download_dir}"
subprocess.run(tar_command, shell=True, check=True)
def _prepare_indexer(self) -> None:
"""
Prepare the BM25 indexer for the document corpus.
"""
nranks = torch.cuda.device_count()
with Run().context(RunConfig(nranks=nranks, experiment=self.exp_name)):
config = ColBERTConfig(nbits=self.nbits, root=self.experiments_dir)
indexer = Indexer(checkpoint=self.model_ckpt_dir, config=config)
indexer.index(name=f"{self.exp_name}.nbits={self.nbits}", collection=self.doc_tsv_path, overwrite='reuse')
def run_all(self) -> Dict[int, Dict[int, float]]:
"""
Run the retrieval for all queries and store the rankings.
Returns:
Dict[int, Dict[int, float]]: A dictionary mapping query IDs to a dictionary of candidate scores.
"""
def find_file_path_by_name(name: str, path: str) -> Optional[str]:
"""
Find the file path by its name in a given directory.
Args:
name (str): The name of the file to find.
path (str): The directory to search.
Returns:
Optional[str]: The file path if found, None otherwise.
"""
for root, dirs, files in os.walk(path):
if name in files:
return osp.join(root, name)
return None
exp_root = osp.join(self.experiments_dir, self.exp_name)
ranking_path = find_file_path_by_name('ranking.tsv', exp_root)
if ranking_path is None:
nranks = torch.cuda.device_count()
with Run().context(RunConfig(nranks=nranks, experiment=self.exp_name)):
config = ColBERTConfig(root=self.experiments_dir)
searcher = Searcher(index=f"{self.exp_name}.nbits={self.nbits}", config=config)
queries = Queries(self.query_tsv_path)
ranking = searcher.search_all(queries, k=self.k)
ranking.save('ranking.tsv')
self.ranking_path = find_file_path_by_name('ranking.tsv', exp_root)
score_dict = defaultdict(dict)
with open(self.ranking_path) as f:
for line in f:
qid, pid, rank, *score = line.strip().split('\t')
qid, pid, rank = int(qid), int(pid), int(rank)
if len(score) > 0:
assert len(score) == 1
score = float(score[0])
score_dict[qid][pid] = score
else:
score_dict[qid][pid] = -999
return score_dict
def forward(self,
query: Union[str, None],
query_id: int,
**kwargs: Any) -> Dict[int, float]:
"""
Forward pass to retrieve rankings for the given query.
Args:
query (str): The query string.
query_id (int): The query index.
Returns:
Dict[int, float]: A dictionary of candidate IDs and their corresponding similarity scores.
"""
score_dict = self.score_dict[query_id]
return {self.pid2docid[pid]: score for pid, score in score_dict.items()}
|