File size: 9,101 Bytes
7bf4b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import os.path as osp
import subprocess
from typing import Any, Union, List, Dict, Optional
from collections import defaultdict

import torch
from tqdm import tqdm

from colbert.infra import Run, RunConfig, ColBERTConfig
from colbert.data import Queries, Collection
from colbert import Indexer, Searcher

from models.model import ModelForSTaRKQA
from stark_qa import load_qa


class Colbertv2(ModelForSTaRKQA):
    """
    ColBERTv2 Model for STaRK QA.

    This model integrates the ColBERTv2 dense retrieval model to rank candidates based on their relevance
    to a query from a question-answering dataset.
    """
    
    url = "https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz"
    
    def __init__(self, 
                 skb: Any, 
                 dataset_name: str, 
                 human_generated_eval: bool, 
                 add_rel: bool = False, 
                 download_dir: str = 'output', 
                 save_dir: str = 'output/colbertv2.0', 
                 nbits: int = 2, 
                 k: int = 100):
        """
        Initialize the ColBERTv2 model with the given knowledge base and parameters.

        Args:
            skb (Any): The knowledge base containing candidate documents.
            dataset_name (str): The name of the dataset being used.
            human_generated_eval (bool): Whether to use human-generated queries for evaluation.
            add_rel (bool, optional): Whether to add relational information to the document. Defaults to False.
            download_dir (str, optional): Directory where the ColBERTv2 model is downloaded. Defaults to 'output'.
            save_dir (str, optional): Directory where the experiment output is saved. Defaults to 'output/colbertv2.0'.
            nbits (int, optional): Number of bits for indexing. Defaults to 2.
            k (int, optional): Number of top candidates to retrieve. Defaults to 100.
        """
        super(Colbertv2, self).__init__(skb)

        self.k = k
        self.nbits = nbits

        query_tsv_name = 'query_hg.tsv' if human_generated_eval else 'query.tsv'
        self.exp_name = dataset_name + '_hg' if human_generated_eval else dataset_name

        self.save_dir = save_dir
        self.download_dir = download_dir
        self.experiments_dir = './experiments'
        
        self.model_ckpt_dir = osp.join(self.download_dir, 'colbertv2.0') 
        self.query_tsv_path = osp.join(self.save_dir, query_tsv_name)
        self.doc_tsv_path = osp.join(self.save_dir, 'doc.tsv')
        self.index_ckpt_path = osp.join(self.save_dir, 'index.faiss')
        self.ranking_path = osp.join(self.save_dir, 'ranking.tsv')

        os.makedirs(self.download_dir, exist_ok=True)
        os.makedirs(self.experiments_dir, exist_ok=True)

        # Load the question-answer dataset and check for required files
        qa_dataset = load_qa(dataset_name, human_generated_eval=human_generated_eval)
        self._check_query_csv(qa_dataset, self.query_tsv_path)
        self._check_doc_csv(skb, self.doc_tsv_path, add_rel)

        # Download and set up the ColBERTv2 model
        self._download()

        # Load the queries and documents into ColBERTv2 format
        self.queries = Queries(self.query_tsv_path)
        self.collection = Collection(self.doc_tsv_path)

        # Prepare the indexer and build the index
        self._prepare_indexer()

        # Run the model and store the results
        self.score_dict = self.run_all()
    
    def _check_query_csv(self, qa_dataset: Any, query_tsv_path: str) -> None:
        """
        Check if the query TSV file exists; if not, create it from the QA dataset.

        Args:
            qa_dataset (Any): The question-answer dataset.
            query_tsv_path (str): Path to the query TSV file.
        """
        if not osp.exists(query_tsv_path):
            queries = {qa_dataset[i][1]: qa_dataset[i][0].replace('\n', ' ') 
                       for i in range(len(qa_dataset))}
            lines = [f"{qid}\t{q}" for qid, q in queries.items()]
            with open(query_tsv_path, 'w') as file:
                file.write('\n'.join(lines))
        else:
            print(f'Loaded existing queries from {query_tsv_path}')

    def _check_doc_csv(self, skb: Any, doc_tsv_path: str, add_rel: bool) -> None:
        """
        Check if the document TSV file exists; if not, create it from the knowledge base.

        Args:
            skb (Any): The knowledge base containing candidate documents.
            doc_tsv_path (str): Path to the document TSV file.
            add_rel (bool): Whether to add relational information to the documents.
        """
        indices = skb.candidate_ids
        self.docid2pid = {idx: i for i, idx in enumerate(indices)}
        self.pid2docid = {i: idx for i, idx in enumerate(indices)}

        if not osp.exists(doc_tsv_path):
            corpus = {self.docid2pid[idx]: skb.get_doc_info(idx, add_rel=add_rel, compact=True)
                      for idx in tqdm(indices, desc="Gathering documents")}
            
            lines = [f"{idx}\t{doc}" for idx, doc in corpus.items()]
            with open(doc_tsv_path, 'w') as file:
                file.write('\n'.join(lines))
        else:
            print(f'Loaded existing documents from {doc_tsv_path}')
    
    def _download(self) -> None:
        """
        Download the ColBERTv2 model if not already available.
        """
        if not osp.exists(osp.join(self.download_dir, 'colbertv2.0')):
            # Download the ColBERTv2 checkpoint
            download_command = f"wget {self.url} -P {self.download_dir}"
            subprocess.run(download_command, shell=True, check=True)

            # Extract the downloaded tar.gz file
            tar_command = f"tar -xvzf {osp.join(self.download_dir, 'colbertv2.0.tar.gz')} -C {self.download_dir}"
            subprocess.run(tar_command, shell=True, check=True)

    def _prepare_indexer(self) -> None:
        """
        Prepare the BM25 indexer for the document corpus.
        """
        nranks = torch.cuda.device_count()
        with Run().context(RunConfig(nranks=nranks, experiment=self.exp_name)):
            config = ColBERTConfig(nbits=self.nbits, root=self.experiments_dir)
            indexer = Indexer(checkpoint=self.model_ckpt_dir, config=config)
            indexer.index(name=f"{self.exp_name}.nbits={self.nbits}", collection=self.doc_tsv_path, overwrite='reuse')

    def run_all(self) -> Dict[int, Dict[int, float]]:
        """
        Run the retrieval for all queries and store the rankings.

        Returns:
            Dict[int, Dict[int, float]]: A dictionary mapping query IDs to a dictionary of candidate scores.
        """
        def find_file_path_by_name(name: str, path: str) -> Optional[str]:
            """
            Find the file path by its name in a given directory.

            Args:
                name (str): The name of the file to find.
                path (str): The directory to search.

            Returns:
                Optional[str]: The file path if found, None otherwise.
            """
            for root, dirs, files in os.walk(path):
                if name in files:
                    return osp.join(root, name)
            return None
        
        exp_root = osp.join(self.experiments_dir, self.exp_name)
        ranking_path = find_file_path_by_name('ranking.tsv', exp_root)
        if ranking_path is None:
            nranks = torch.cuda.device_count()
            with Run().context(RunConfig(nranks=nranks, experiment=self.exp_name)):
                config = ColBERTConfig(root=self.experiments_dir)
                searcher = Searcher(index=f"{self.exp_name}.nbits={self.nbits}", config=config)
                queries = Queries(self.query_tsv_path)
                ranking = searcher.search_all(queries, k=self.k)
                ranking.save('ranking.tsv')
        
        self.ranking_path = find_file_path_by_name('ranking.tsv', exp_root)

        score_dict = defaultdict(dict)
        with open(self.ranking_path) as f:
            for line in f:
                qid, pid, rank, *score = line.strip().split('\t')
                qid, pid, rank = int(qid), int(pid), int(rank)
                if len(score) > 0:
                    assert len(score) == 1
                    score = float(score[0])
                    score_dict[qid][pid] = score
                else:
                    score_dict[qid][pid] = -999

        return score_dict

    def forward(self, 
                query: Union[str, None], 
                query_id: int, 
                **kwargs: Any) -> Dict[int, float]:
        """
        Forward pass to retrieve rankings for the given query.

        Args:
            query (str): The query string.
            query_id (int): The query index.

        Returns:
            Dict[int, float]: A dictionary of candidate IDs and their corresponding similarity scores.
        """
        score_dict = self.score_dict[query_id]
        return {self.pid2docid[pid]: score for pid, score in score_dict.items()}