Upload PrateritumGPT.py
Browse files- PrateritumGPT.py +119 -0
PrateritumGPT.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader
|
| 5 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
tokens = list("azertyuiopqsdfghjklmwxcvbnäüöß—– ")
|
| 9 |
+
tokensdict = {}
|
| 10 |
+
|
| 11 |
+
for i in range(len(tokens)):
|
| 12 |
+
tokensdict.update({tokens[i]: [0] * i + [0] * (len(tokens) - (i + 1))})
|
| 13 |
+
|
| 14 |
+
# Ouvrir le fichier CSV
|
| 15 |
+
with open("C:\\Users\\marc2\\Downloads\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\top-german-verbs.csv", 'r', encoding="utf-8") as file:
|
| 16 |
+
# Créer un objet lecteur CSV
|
| 17 |
+
reader = [i for i in csv.reader(file)][1:]
|
| 18 |
+
|
| 19 |
+
class CSVDataset(Dataset):
|
| 20 |
+
def __init__(self, features, labels):
|
| 21 |
+
self.features = features
|
| 22 |
+
self.labels = labels
|
| 23 |
+
|
| 24 |
+
def __len__(self):
|
| 25 |
+
return len(self.features)
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, idx):
|
| 28 |
+
sample = self.features[idx], self.labels[idx]
|
| 29 |
+
return sample
|
| 30 |
+
|
| 31 |
+
# Supposons que vous ayez vos données sous forme de listes
|
| 32 |
+
features = []
|
| 33 |
+
labels = []
|
| 34 |
+
|
| 35 |
+
for i in reader:
|
| 36 |
+
k = []
|
| 37 |
+
for j in i[2]:
|
| 38 |
+
k += [tokens.index(j)]
|
| 39 |
+
k += [len(tokens) + 1] * (25 - len(k))
|
| 40 |
+
features += [torch.Tensor(k)]
|
| 41 |
+
k = []
|
| 42 |
+
for j in i[8]:
|
| 43 |
+
k += [tokens.index(j)]
|
| 44 |
+
k += [len(tokens) + 1] * (25 - len(k))
|
| 45 |
+
labels += [torch.Tensor(k)]
|
| 46 |
+
|
| 47 |
+
MyDataset = CSVDataset(features=features, labels=labels)
|
| 48 |
+
|
| 49 |
+
class TransformerModel(nn.Module):
|
| 50 |
+
def __init__(self, vocab_size, emb_dim, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.custom_embedding = nn.Embedding(vocab_size, emb_dim)
|
| 53 |
+
self.pos_encoder = PositionalEncoding(emb_dim, dropout)
|
| 54 |
+
encoder_layer = nn.TransformerEncoderLayer(emb_dim, nhead, dim_feedforward, dropout)
|
| 55 |
+
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers)
|
| 56 |
+
decoder_layer = nn.TransformerDecoderLayer(emb_dim, nhead, dim_feedforward, dropout)
|
| 57 |
+
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers)
|
| 58 |
+
self.output_layer = nn.Linear(emb_dim, vocab_size)
|
| 59 |
+
|
| 60 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
| 61 |
+
src_emb = self.pos_encoder(self.custom_embedding(src.long()))
|
| 62 |
+
tgt_emb = self.pos_encoder(self.custom_embedding(tgt.long()))
|
| 63 |
+
encoder_output = self.transformer_encoder(src_emb, src_mask, src_key_padding_mask)
|
| 64 |
+
decoder_output = self.transformer_decoder(tgt_emb, encoder_output, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)
|
| 65 |
+
output = self.output_layer(decoder_output)
|
| 66 |
+
return output
|
| 67 |
+
|
| 68 |
+
# Définition de la classe PositionalEncoding (identique à l'exemple précédent)
|
| 69 |
+
class PositionalEncoding(nn.Module):
|
| 70 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
| 71 |
+
super(PositionalEncoding, self).__init__()
|
| 72 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 73 |
+
|
| 74 |
+
pe = torch.zeros(max_len, d_model)
|
| 75 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
| 76 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
| 77 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 78 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 79 |
+
pe = pe.unsqueeze(0).transpose(0, 1)
|
| 80 |
+
self.register_buffer('pe', pe)
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
x = x + self.pe[:x.size(0), :]
|
| 84 |
+
return self.dropout(x)
|
| 85 |
+
|
| 86 |
+
# Préparation des données
|
| 87 |
+
def collate_fn(batch):
|
| 88 |
+
inputs = [item[0] for item in batch]
|
| 89 |
+
targets = [item[1] for item in batch]
|
| 90 |
+
inputs = pad_sequence(inputs, batch_first=True, padding_value=len(tokens) + 1)
|
| 91 |
+
targets = pad_sequence(targets, batch_first=True, padding_value=len(tokens) + 1)
|
| 92 |
+
return inputs, targets
|
| 93 |
+
|
| 94 |
+
train_loader = DataLoader(MyDataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
|
| 95 |
+
|
| 96 |
+
# Définition du modèle, de la fonction de perte et de l'optimiseur
|
| 97 |
+
model = TransformerModel(vocab_size=len(tokens) + 2, emb_dim=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048)
|
| 98 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 99 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
| 100 |
+
|
| 101 |
+
epochs = 10
|
| 102 |
+
|
| 103 |
+
for epoch in range(epochs):
|
| 104 |
+
total_loss = 0.0
|
| 105 |
+
|
| 106 |
+
for batch_idx, (inputs, targets) in enumerate(train_loader):
|
| 107 |
+
optimizer.zero_grad()
|
| 108 |
+
output = model(inputs, targets[:, :-1]) # Shifted targets
|
| 109 |
+
output = output.transpose(1, 2) # Adjust shape for loss function
|
| 110 |
+
loss = loss_fn(output, targets[:, 1:].long()) # Shifted targets
|
| 111 |
+
loss.backward()
|
| 112 |
+
optimizer.step()
|
| 113 |
+
|
| 114 |
+
total_loss += loss.item()
|
| 115 |
+
|
| 116 |
+
if batch_idx % 100 == 0:
|
| 117 |
+
print(f"Epoch {epoch + 1}/{epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {total_loss / (batch_idx + 1)}")
|
| 118 |
+
|
| 119 |
+
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader)}")
|