seven-cat commited on
Commit
6e9d6a0
·
verified ·
1 Parent(s): ad224e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -9
README.md CHANGED
@@ -10,16 +10,11 @@ pipeline_tag: text-classification
10
 
11
  ## Model Description
12
 
13
- `ReasonEval-34B` is a 34B parameter decoder-only language model fine-tuned from [`llemma_34b`](https://huggingface.co/EleutherAI/llemma_34b).
14
-
15
- <p align="center">
16
- <img src="introduction.jpg" alt="error" style="width:95%;">
17
- </p>
18
-
19
- `ReasonEval-34B` assesses the problem-solving process in a step-by-step format from the following perspectives:
20
  - **Validity**: The step contains no mistakes in calculation and logic.
21
  - **Redundancy**: The step lacks utility in solving the problem but is still valid.
22
 
 
23
  With ReasonEval, you can
24
 
25
  - 📏 quantify the quality of reasoning steps free of human or close-source models.
@@ -34,12 +29,12 @@ With ReasonEval, you can
34
  classification head for next-token prediction is replaced with a classification head for outputting the
35
  possibilities of each class of reasong steps.
36
  * **Language(s)**: English
37
- * **Paper**: [Evaluating Mathematical Reasoning Beyond Accuracy](https://drive.google.com/file/d/1Lw1uGFzTUWxo3mB91sfdusSrxnCCO9mR/view?usp=sharing)
38
  * **Github**: [https://github.com/GAIR-NLP/ReasonEval](https://github.com/GAIR-NLP/ReasonEval)
39
  * **Finetuned from model**: [https://huggingface.co/EleutherAI/llemma_34b](https://huggingface.co/EleutherAI/llemma_34b)
40
  * **Fine-tuning Data**: [PRM800K](https://github.com/openai/prm800k)
41
 
42
- For detailed instructions on how to use the ReasonEval-34B model, visit our GitHub repository at [https://github.com/GAIR-NLP/ReasonEval](https://github.com/GAIR-NLP/ReasonEval).
43
  ## How to Cite
44
  ```bibtex
45
  ```
 
10
 
11
  ## Model Description
12
 
13
+ `ReasonEval-34B` is a 34B parameter decoder-only language model fine-tuned from [`llemma_34b`](https://huggingface.co/EleutherAI/llemma_34b). Given a mathematical problem and the solution, `ReasonEval-7B` assesses the problem-solving process in a step-by-step format from the following perspectives:
 
 
 
 
 
 
14
  - **Validity**: The step contains no mistakes in calculation and logic.
15
  - **Redundancy**: The step lacks utility in solving the problem but is still valid.
16
 
17
+
18
  With ReasonEval, you can
19
 
20
  - 📏 quantify the quality of reasoning steps free of human or close-source models.
 
29
  classification head for next-token prediction is replaced with a classification head for outputting the
30
  possibilities of each class of reasong steps.
31
  * **Language(s)**: English
32
+ * **Paper**: [Evaluating Mathematical Reasoning Beyond Accuracy]()
33
  * **Github**: [https://github.com/GAIR-NLP/ReasonEval](https://github.com/GAIR-NLP/ReasonEval)
34
  * **Finetuned from model**: [https://huggingface.co/EleutherAI/llemma_34b](https://huggingface.co/EleutherAI/llemma_34b)
35
  * **Fine-tuning Data**: [PRM800K](https://github.com/openai/prm800k)
36
 
37
+ For detailed instructions on how to use the ReasonEval-34B model, visit our GitHub repository at [https://github.com/GAIR-NLP/ReasonEval](https://github.com/GAIR-NLP/ReasonEval) and the [paper]() .
38
  ## How to Cite
39
  ```bibtex
40
  ```