--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: kekurangan nya yaitu jaringan saya udah bagus:Terima kasih untuk supercell telah membuat game baru. Tapi ada kekurangan nya yaitu jaringan saya udah bagus tapi ketika saya main dia keluar padahal kalau saya login coc sm clash Royale masih bagus. Di harapkan kedepannya server nya makin bagus. - text: sinyal selalu bermasalah,:sinyal selalu bermasalah, login kadang macet dan saat masuk game sering eror - text: keren dan lucu² karakter nya😍.:Mekanik game nya simple, gameplay nya juga asik, seru dan lumayan gampang. Cuma perlu internet yg sinyalnya kuat dan cepet kalo MW lancar mainin nya, entah sinyal dari provider ku yg lemah atau karena gamenya yg masi baru dan masi ada bug, itu gak terlalu menarik buat dibahas. Overall gamenya bagus, keren dan lucu² karakter nya😍. Thanks supercell. - text: tapi entah kenapa layar gameku kayak ngefrezee ketika:Overall gamenya bagus tapi entah kenapa layar gameku kayak ngefrezee ketika mau coba sambung dengan supercell id. Tolong di perbaiki ya tim supercell - text: banyak yang mengeluh game ini sering frame:Game yang seru!! Tapi, untuk persediaan peti tolong diperbanyak lagi. Oh iya, banyak yang mengeluh game ini sering frame drop atau server jelek. Entahlah, mungkin ada yang salah dengan hp kalian, padahal di hp kentang saya yang sudah berusia 5 tahun masih berjalan lancar-lancar saja. Dengan RAM 3 GB dan Snapdragon 636, masih kuat buat jalanin game ini. Server juga tidak ada masalah, main 1 jam bahkan lebih tetap aman-aman saja. pipeline_tag: text-classification inference: false --- # SetFit Polarity Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_game_squad_busters-aspect](https://huggingface.co/Funnyworld1412/ABSA_game_squad_busters-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_game_squad_busters-polarity](https://huggingface.co/Funnyworld1412/ABSA_game_squad_busters-polarity) - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Negative | | | Positive | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/ABSA_game_squad_busters-aspect", "Funnyworld1412/ABSA_game_squad_busters-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 11 | 39.7490 | 94 | | Label | Training Sample Count | |:--------|:----------------------| | konflik | 0 | | negatif | 0 | | netral | 0 | | positif | 0 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.1468 | - | | 0.0198 | 50 | 0.2275 | - | | 0.0395 | 100 | 0.1824 | - | | 0.0593 | 150 | 0.1943 | - | | 0.0791 | 200 | 0.0063 | - | | 0.0988 | 250 | 0.2251 | - | | 0.1186 | 300 | 0.0068 | - | | 0.1383 | 350 | 0.0046 | - | | 0.1581 | 400 | 0.0015 | - | | 0.1779 | 450 | 0.0014 | - | | 0.1976 | 500 | 0.0018 | - | | 0.2174 | 550 | 0.2301 | - | | 0.2372 | 600 | 0.0011 | - | | 0.2569 | 650 | 0.0051 | - | | 0.2767 | 700 | 0.0015 | - | | 0.2964 | 750 | 0.0016 | - | | 0.3162 | 800 | 0.0007 | - | | 0.3360 | 850 | 0.0027 | - | | 0.3557 | 900 | 0.0014 | - | | 0.3755 | 950 | 0.0077 | - | | 0.3953 | 1000 | 0.001 | - | | 0.4150 | 1050 | 0.0006 | - | | 0.4348 | 1100 | 0.0009 | - | | 0.4545 | 1150 | 0.1986 | - | | 0.4743 | 1200 | 0.0004 | - | | 0.4941 | 1250 | 0.0008 | - | | 0.5138 | 1300 | 0.0008 | - | | 0.5336 | 1350 | 0.0011 | - | | 0.5534 | 1400 | 0.0088 | - | | 0.5731 | 1450 | 0.001 | - | | 0.5929 | 1500 | 0.0025 | - | | 0.6126 | 1550 | 0.0006 | - | | 0.6324 | 1600 | 0.0005 | - | | 0.6522 | 1650 | 0.0006 | - | | 0.6719 | 1700 | 0.0024 | - | | 0.6917 | 1750 | 0.0725 | - | | 0.7115 | 1800 | 0.1236 | - | | 0.7312 | 1850 | 0.0006 | - | | 0.7510 | 1900 | 0.001 | - | | 0.7708 | 1950 | 0.0003 | - | | 0.7905 | 2000 | 0.0003 | - | | 0.8103 | 2050 | 0.0004 | - | | 0.8300 | 2100 | 0.0004 | - | | 0.8498 | 2150 | 0.0005 | - | | 0.8696 | 2200 | 0.0003 | - | | 0.8893 | 2250 | 0.0005 | - | | 0.9091 | 2300 | 0.0003 | - | | 0.9289 | 2350 | 0.0004 | - | | 0.9486 | 2400 | 0.0005 | - | | 0.9684 | 2450 | 0.0006 | - | | 0.9881 | 2500 | 0.0007 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```