--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: modelsent_test results: [] --- # modelsent_test This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2379 - Accuracy: 0.9261 - F1: 0.9261 - Precision: 0.9261 - Recall: 0.9261 - Accuracy Label Negative: 0.9242 - Accuracy Label Positive: 0.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------:|:-----------------------:| | 0.5403 | 0.2442 | 100 | 0.5274 | 0.7611 | 0.7596 | 0.7728 | 0.7611 | 0.8535 | 0.6746 | | 0.2673 | 0.4884 | 200 | 0.2806 | 0.8980 | 0.8980 | 0.8994 | 0.8980 | 0.9230 | 0.8746 | | 0.247 | 0.7326 | 300 | 0.2610 | 0.9029 | 0.9024 | 0.9074 | 0.9029 | 0.8434 | 0.9586 | | 0.2357 | 0.9768 | 400 | 0.2560 | 0.9084 | 0.9084 | 0.9096 | 0.9084 | 0.9318 | 0.8864 | | 0.2094 | 1.2198 | 500 | 0.3127 | 0.9090 | 0.9089 | 0.9123 | 0.9090 | 0.9508 | 0.8698 | | 0.1695 | 1.4640 | 600 | 0.2298 | 0.9188 | 0.9187 | 0.9189 | 0.9188 | 0.9053 | 0.9314 | | 0.2024 | 1.7082 | 700 | 0.2218 | 0.9206 | 0.9206 | 0.9214 | 0.9206 | 0.9394 | 0.9030 | | 0.1155 | 1.9524 | 800 | 0.2061 | 0.9236 | 0.9236 | 0.9236 | 0.9236 | 0.9192 | 0.9278 | | 0.1361 | 2.1954 | 900 | 0.2299 | 0.9218 | 0.9218 | 0.9226 | 0.9218 | 0.9407 | 0.9041 | | 0.1235 | 2.4396 | 1000 | 0.2668 | 0.9212 | 0.9212 | 0.9246 | 0.9212 | 0.9634 | 0.8817 | | 0.084 | 2.6838 | 1100 | 0.2733 | 0.9218 | 0.9218 | 0.9240 | 0.9218 | 0.9545 | 0.8911 | | 0.1326 | 2.9280 | 1200 | 0.2395 | 0.9249 | 0.9249 | 0.9249 | 0.9249 | 0.9192 | 0.9302 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0