Frenz commited on
Commit
14d8851
·
verified ·
1 Parent(s): 24e35ea

Frenz/modelsent_test

Browse files
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: albert/albert-base-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: modelsent_test
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
 
19
+ # modelsent_test
20
 
21
+ This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2510
24
+ - Accuracy: 0.9261
25
+ - F1: 0.9261
26
+ - Precision: 0.9261
27
+ - Recall: 0.9261
28
+ - Accuracy Label Negative: 0.9255
29
+ - Accuracy Label Positive: 0.9266
30
 
31
+ ## Model description
32
 
33
+ More information needed
34
 
35
+ ## Intended uses & limitations
36
 
37
+ More information needed
38
 
39
+ ## Training and evaluation data
40
 
41
+ More information needed
 
 
 
 
 
 
42
 
43
+ ## Training procedure
44
 
45
+ ### Training hyperparameters
46
 
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 32
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 500
57
+ - num_epochs: 3
58
 
59
+ ### Training results
60
 
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------:|:-----------------------:|
63
+ | 0.5848 | 0.2442 | 100 | 0.5668 | 0.7783 | 0.7774 | 0.7869 | 0.7783 | 0.8548 | 0.7065 |
64
+ | 0.2761 | 0.4884 | 200 | 0.2858 | 0.8913 | 0.8912 | 0.8944 | 0.8913 | 0.9318 | 0.8533 |
65
+ | 0.2099 | 0.7326 | 300 | 0.2412 | 0.9114 | 0.9114 | 0.9116 | 0.9114 | 0.8965 | 0.9254 |
66
+ | 0.2717 | 0.9768 | 400 | 0.2532 | 0.9133 | 0.9133 | 0.9141 | 0.9133 | 0.9318 | 0.8959 |
67
+ | 0.2076 | 1.2210 | 500 | 0.2588 | 0.9084 | 0.9083 | 0.9111 | 0.9084 | 0.9457 | 0.8734 |
68
+ | 0.1745 | 1.4652 | 600 | 0.2217 | 0.9133 | 0.9132 | 0.9133 | 0.9133 | 0.9028 | 0.9231 |
69
+ | 0.21 | 1.7094 | 700 | 0.2161 | 0.9157 | 0.9157 | 0.9157 | 0.9157 | 0.9078 | 0.9231 |
70
+ | 0.1349 | 1.9536 | 800 | 0.2092 | 0.9243 | 0.9242 | 0.9245 | 0.9243 | 0.9078 | 0.9396 |
71
+ | 0.1795 | 2.1978 | 900 | 0.2492 | 0.9175 | 0.9175 | 0.9189 | 0.9175 | 0.9432 | 0.8935 |
72
+ | 0.107 | 2.4420 | 1000 | 0.2743 | 0.9120 | 0.9120 | 0.9163 | 0.9120 | 0.9596 | 0.8675 |
73
+ | 0.08 | 2.6862 | 1100 | 0.2606 | 0.9188 | 0.9188 | 0.9200 | 0.9188 | 0.9432 | 0.8959 |
74
+ | 0.1275 | 2.9304 | 1200 | 0.2550 | 0.9255 | 0.9255 | 0.9255 | 0.9255 | 0.9167 | 0.9337 |
75
 
 
76
 
77
+ ### Framework versions
78
 
79
+ - Transformers 4.41.2
80
+ - Pytorch 2.3.0+cu121
81
+ - Datasets 2.19.1
82
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "albert/albert-base-v2",
3
+ "architectures": [
4
+ "AlbertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "negative",
18
+ "1": "positive"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "inner_group_num": 1,
22
+ "intermediate_size": 3072,
23
+ "label2id": {
24
+ "negative": 0,
25
+ "positive": 1
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "max_position_embeddings": 512,
29
+ "model_type": "albert",
30
+ "net_structure_type": 0,
31
+ "num_attention_heads": 12,
32
+ "num_hidden_groups": 1,
33
+ "num_hidden_layers": 12,
34
+ "num_memory_blocks": 0,
35
+ "pad_token_id": 0,
36
+ "position_embedding_type": "absolute",
37
+ "problem_type": "single_label_classification",
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.41.2",
40
+ "type_vocab_size": 2,
41
+ "vocab_size": 30000
42
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d29a598f2808b8a565502687990d28082b2a6e7357728d3bedda42ed80cbc0
3
+ size 46743912
runs/Jun02_11-18-47_abf2682c2968/events.out.tfevents.1717327130.abf2682c2968.2623.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94e7fd6e6cb320d36f6c6b296a3811ad10c75ae8d12031ab703bdbc4e2a75804
3
+ size 38395
runs/Jun02_11-18-47_abf2682c2968/events.out.tfevents.1717327818.abf2682c2968.2623.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab9f40f4cb095ffca86f51db5ee9b433422c727aa47c9e99a32aedd0eadda417
3
+ size 694
trainer_state.json ADDED
@@ -0,0 +1,1078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9963369963369964,
5
+ "eval_steps": 100,
6
+ "global_step": 1227,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02442002442002442,
13
+ "grad_norm": 10.498289108276367,
14
+ "learning_rate": 4.0000000000000003e-07,
15
+ "loss": 0.7042,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.04884004884004884,
20
+ "grad_norm": 9.02344799041748,
21
+ "learning_rate": 8.000000000000001e-07,
22
+ "loss": 0.7274,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.07326007326007326,
27
+ "grad_norm": 12.760648727416992,
28
+ "learning_rate": 1.2000000000000002e-06,
29
+ "loss": 0.7136,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.09768009768009768,
34
+ "grad_norm": 11.814812660217285,
35
+ "learning_rate": 1.6000000000000001e-06,
36
+ "loss": 0.7063,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.1221001221001221,
41
+ "grad_norm": 10.731100082397461,
42
+ "learning_rate": 2.0000000000000003e-06,
43
+ "loss": 0.6947,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.14652014652014653,
48
+ "grad_norm": 9.641815185546875,
49
+ "learning_rate": 2.4000000000000003e-06,
50
+ "loss": 0.6883,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17094017094017094,
55
+ "grad_norm": 10.62743854522705,
56
+ "learning_rate": 2.8000000000000003e-06,
57
+ "loss": 0.6673,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.19536019536019536,
62
+ "grad_norm": 15.131406784057617,
63
+ "learning_rate": 3.2000000000000003e-06,
64
+ "loss": 0.6422,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.21978021978021978,
69
+ "grad_norm": 11.530914306640625,
70
+ "learning_rate": 3.6000000000000003e-06,
71
+ "loss": 0.6155,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.2442002442002442,
76
+ "grad_norm": 9.192888259887695,
77
+ "learning_rate": 4.000000000000001e-06,
78
+ "loss": 0.5848,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.2442002442002442,
83
+ "eval_accuracy": 0.7782529016493586,
84
+ "eval_accuracy_label_negative": 0.8547979797979798,
85
+ "eval_accuracy_label_positive": 0.7065088757396449,
86
+ "eval_f1": 0.7773703489129234,
87
+ "eval_loss": 0.5668291449546814,
88
+ "eval_precision": 0.7869130340900089,
89
+ "eval_recall": 0.7782529016493586,
90
+ "eval_runtime": 6.1736,
91
+ "eval_samples_per_second": 265.16,
92
+ "eval_steps_per_second": 16.684,
93
+ "step": 100
94
+ },
95
+ {
96
+ "epoch": 0.2686202686202686,
97
+ "grad_norm": 11.79243278503418,
98
+ "learning_rate": 4.4e-06,
99
+ "loss": 0.5391,
100
+ "step": 110
101
+ },
102
+ {
103
+ "epoch": 0.29304029304029305,
104
+ "grad_norm": 13.897492408752441,
105
+ "learning_rate": 4.800000000000001e-06,
106
+ "loss": 0.4971,
107
+ "step": 120
108
+ },
109
+ {
110
+ "epoch": 0.31746031746031744,
111
+ "grad_norm": 18.756803512573242,
112
+ "learning_rate": 5.2e-06,
113
+ "loss": 0.4148,
114
+ "step": 130
115
+ },
116
+ {
117
+ "epoch": 0.3418803418803419,
118
+ "grad_norm": 18.242826461791992,
119
+ "learning_rate": 5.600000000000001e-06,
120
+ "loss": 0.3547,
121
+ "step": 140
122
+ },
123
+ {
124
+ "epoch": 0.3663003663003663,
125
+ "grad_norm": 7.90754508972168,
126
+ "learning_rate": 6e-06,
127
+ "loss": 0.3547,
128
+ "step": 150
129
+ },
130
+ {
131
+ "epoch": 0.3907203907203907,
132
+ "grad_norm": 11.013474464416504,
133
+ "learning_rate": 6.4000000000000006e-06,
134
+ "loss": 0.309,
135
+ "step": 160
136
+ },
137
+ {
138
+ "epoch": 0.41514041514041516,
139
+ "grad_norm": 24.09418487548828,
140
+ "learning_rate": 6.800000000000001e-06,
141
+ "loss": 0.3168,
142
+ "step": 170
143
+ },
144
+ {
145
+ "epoch": 0.43956043956043955,
146
+ "grad_norm": 12.913431167602539,
147
+ "learning_rate": 7.2000000000000005e-06,
148
+ "loss": 0.2891,
149
+ "step": 180
150
+ },
151
+ {
152
+ "epoch": 0.463980463980464,
153
+ "grad_norm": 38.170555114746094,
154
+ "learning_rate": 7.600000000000001e-06,
155
+ "loss": 0.277,
156
+ "step": 190
157
+ },
158
+ {
159
+ "epoch": 0.4884004884004884,
160
+ "grad_norm": 19.653949737548828,
161
+ "learning_rate": 8.000000000000001e-06,
162
+ "loss": 0.2761,
163
+ "step": 200
164
+ },
165
+ {
166
+ "epoch": 0.4884004884004884,
167
+ "eval_accuracy": 0.8912645082467929,
168
+ "eval_accuracy_label_negative": 0.9318181818181818,
169
+ "eval_accuracy_label_positive": 0.8532544378698225,
170
+ "eval_f1": 0.8912162170726895,
171
+ "eval_loss": 0.2858136296272278,
172
+ "eval_precision": 0.8944362774670781,
173
+ "eval_recall": 0.8912645082467929,
174
+ "eval_runtime": 6.345,
175
+ "eval_samples_per_second": 257.999,
176
+ "eval_steps_per_second": 16.233,
177
+ "step": 200
178
+ },
179
+ {
180
+ "epoch": 0.5128205128205128,
181
+ "grad_norm": 38.47966003417969,
182
+ "learning_rate": 8.400000000000001e-06,
183
+ "loss": 0.228,
184
+ "step": 210
185
+ },
186
+ {
187
+ "epoch": 0.5372405372405372,
188
+ "grad_norm": 37.67184829711914,
189
+ "learning_rate": 8.8e-06,
190
+ "loss": 0.204,
191
+ "step": 220
192
+ },
193
+ {
194
+ "epoch": 0.5616605616605617,
195
+ "grad_norm": 9.530702590942383,
196
+ "learning_rate": 9.200000000000002e-06,
197
+ "loss": 0.2728,
198
+ "step": 230
199
+ },
200
+ {
201
+ "epoch": 0.5860805860805861,
202
+ "grad_norm": 24.261260986328125,
203
+ "learning_rate": 9.600000000000001e-06,
204
+ "loss": 0.2755,
205
+ "step": 240
206
+ },
207
+ {
208
+ "epoch": 0.6105006105006106,
209
+ "grad_norm": 25.7033634185791,
210
+ "learning_rate": 1e-05,
211
+ "loss": 0.2787,
212
+ "step": 250
213
+ },
214
+ {
215
+ "epoch": 0.6349206349206349,
216
+ "grad_norm": 21.64457893371582,
217
+ "learning_rate": 1.04e-05,
218
+ "loss": 0.2357,
219
+ "step": 260
220
+ },
221
+ {
222
+ "epoch": 0.6593406593406593,
223
+ "grad_norm": 23.77570915222168,
224
+ "learning_rate": 1.0800000000000002e-05,
225
+ "loss": 0.2388,
226
+ "step": 270
227
+ },
228
+ {
229
+ "epoch": 0.6837606837606838,
230
+ "grad_norm": 20.548864364624023,
231
+ "learning_rate": 1.1200000000000001e-05,
232
+ "loss": 0.2058,
233
+ "step": 280
234
+ },
235
+ {
236
+ "epoch": 0.7081807081807082,
237
+ "grad_norm": 14.279947280883789,
238
+ "learning_rate": 1.16e-05,
239
+ "loss": 0.2169,
240
+ "step": 290
241
+ },
242
+ {
243
+ "epoch": 0.7326007326007326,
244
+ "grad_norm": 20.323959350585938,
245
+ "learning_rate": 1.2e-05,
246
+ "loss": 0.2099,
247
+ "step": 300
248
+ },
249
+ {
250
+ "epoch": 0.7326007326007326,
251
+ "eval_accuracy": 0.9114233353695785,
252
+ "eval_accuracy_label_negative": 0.8964646464646465,
253
+ "eval_accuracy_label_positive": 0.9254437869822485,
254
+ "eval_f1": 0.9113780300690499,
255
+ "eval_loss": 0.2412199079990387,
256
+ "eval_precision": 0.9115789422424927,
257
+ "eval_recall": 0.9114233353695785,
258
+ "eval_runtime": 6.209,
259
+ "eval_samples_per_second": 263.65,
260
+ "eval_steps_per_second": 16.589,
261
+ "step": 300
262
+ },
263
+ {
264
+ "epoch": 0.757020757020757,
265
+ "grad_norm": 13.649131774902344,
266
+ "learning_rate": 1.2400000000000002e-05,
267
+ "loss": 0.2337,
268
+ "step": 310
269
+ },
270
+ {
271
+ "epoch": 0.7814407814407814,
272
+ "grad_norm": 18.731950759887695,
273
+ "learning_rate": 1.2800000000000001e-05,
274
+ "loss": 0.202,
275
+ "step": 320
276
+ },
277
+ {
278
+ "epoch": 0.8058608058608059,
279
+ "grad_norm": 2.1580898761749268,
280
+ "learning_rate": 1.3200000000000002e-05,
281
+ "loss": 0.1882,
282
+ "step": 330
283
+ },
284
+ {
285
+ "epoch": 0.8302808302808303,
286
+ "grad_norm": 17.960113525390625,
287
+ "learning_rate": 1.3600000000000002e-05,
288
+ "loss": 0.2176,
289
+ "step": 340
290
+ },
291
+ {
292
+ "epoch": 0.8547008547008547,
293
+ "grad_norm": 19.708494186401367,
294
+ "learning_rate": 1.4e-05,
295
+ "loss": 0.2565,
296
+ "step": 350
297
+ },
298
+ {
299
+ "epoch": 0.8791208791208791,
300
+ "grad_norm": 15.667474746704102,
301
+ "learning_rate": 1.4400000000000001e-05,
302
+ "loss": 0.2572,
303
+ "step": 360
304
+ },
305
+ {
306
+ "epoch": 0.9035409035409036,
307
+ "grad_norm": 38.89118194580078,
308
+ "learning_rate": 1.48e-05,
309
+ "loss": 0.2842,
310
+ "step": 370
311
+ },
312
+ {
313
+ "epoch": 0.927960927960928,
314
+ "grad_norm": 25.795814514160156,
315
+ "learning_rate": 1.5200000000000002e-05,
316
+ "loss": 0.1919,
317
+ "step": 380
318
+ },
319
+ {
320
+ "epoch": 0.9523809523809523,
321
+ "grad_norm": 57.172943115234375,
322
+ "learning_rate": 1.5600000000000003e-05,
323
+ "loss": 0.1728,
324
+ "step": 390
325
+ },
326
+ {
327
+ "epoch": 0.9768009768009768,
328
+ "grad_norm": 12.05911922454834,
329
+ "learning_rate": 1.6000000000000003e-05,
330
+ "loss": 0.2717,
331
+ "step": 400
332
+ },
333
+ {
334
+ "epoch": 0.9768009768009768,
335
+ "eval_accuracy": 0.9132559560171044,
336
+ "eval_accuracy_label_negative": 0.9318181818181818,
337
+ "eval_accuracy_label_positive": 0.8958579881656805,
338
+ "eval_f1": 0.9132768698355349,
339
+ "eval_loss": 0.25323960185050964,
340
+ "eval_precision": 0.9140857692521688,
341
+ "eval_recall": 0.9132559560171044,
342
+ "eval_runtime": 6.6576,
343
+ "eval_samples_per_second": 245.883,
344
+ "eval_steps_per_second": 15.471,
345
+ "step": 400
346
+ },
347
+ {
348
+ "epoch": 1.0012210012210012,
349
+ "grad_norm": 175.93984985351562,
350
+ "learning_rate": 1.64e-05,
351
+ "loss": 0.2158,
352
+ "step": 410
353
+ },
354
+ {
355
+ "epoch": 1.0256410256410255,
356
+ "grad_norm": 4.0570220947265625,
357
+ "learning_rate": 1.6800000000000002e-05,
358
+ "loss": 0.1614,
359
+ "step": 420
360
+ },
361
+ {
362
+ "epoch": 1.05006105006105,
363
+ "grad_norm": 20.152868270874023,
364
+ "learning_rate": 1.72e-05,
365
+ "loss": 0.1849,
366
+ "step": 430
367
+ },
368
+ {
369
+ "epoch": 1.0744810744810744,
370
+ "grad_norm": 15.713109970092773,
371
+ "learning_rate": 1.76e-05,
372
+ "loss": 0.1128,
373
+ "step": 440
374
+ },
375
+ {
376
+ "epoch": 1.098901098901099,
377
+ "grad_norm": 6.342801094055176,
378
+ "learning_rate": 1.8e-05,
379
+ "loss": 0.1914,
380
+ "step": 450
381
+ },
382
+ {
383
+ "epoch": 1.1233211233211233,
384
+ "grad_norm": 35.65519714355469,
385
+ "learning_rate": 1.8400000000000003e-05,
386
+ "loss": 0.2143,
387
+ "step": 460
388
+ },
389
+ {
390
+ "epoch": 1.1477411477411477,
391
+ "grad_norm": 61.438838958740234,
392
+ "learning_rate": 1.88e-05,
393
+ "loss": 0.2332,
394
+ "step": 470
395
+ },
396
+ {
397
+ "epoch": 1.1721611721611722,
398
+ "grad_norm": 21.36277961730957,
399
+ "learning_rate": 1.9200000000000003e-05,
400
+ "loss": 0.2433,
401
+ "step": 480
402
+ },
403
+ {
404
+ "epoch": 1.1965811965811965,
405
+ "grad_norm": 6.238389015197754,
406
+ "learning_rate": 1.9600000000000002e-05,
407
+ "loss": 0.131,
408
+ "step": 490
409
+ },
410
+ {
411
+ "epoch": 1.221001221001221,
412
+ "grad_norm": 44.72506332397461,
413
+ "learning_rate": 2e-05,
414
+ "loss": 0.2076,
415
+ "step": 500
416
+ },
417
+ {
418
+ "epoch": 1.221001221001221,
419
+ "eval_accuracy": 0.9083689676237019,
420
+ "eval_accuracy_label_negative": 0.9457070707070707,
421
+ "eval_accuracy_label_positive": 0.8733727810650888,
422
+ "eval_f1": 0.9083448942204814,
423
+ "eval_loss": 0.25875234603881836,
424
+ "eval_precision": 0.9111034284789092,
425
+ "eval_recall": 0.9083689676237019,
426
+ "eval_runtime": 6.2625,
427
+ "eval_samples_per_second": 261.397,
428
+ "eval_steps_per_second": 16.447,
429
+ "step": 500
430
+ },
431
+ {
432
+ "epoch": 1.2454212454212454,
433
+ "grad_norm": 24.117422103881836,
434
+ "learning_rate": 1.9724896836313617e-05,
435
+ "loss": 0.217,
436
+ "step": 510
437
+ },
438
+ {
439
+ "epoch": 1.2698412698412698,
440
+ "grad_norm": 15.197860717773438,
441
+ "learning_rate": 1.9449793672627236e-05,
442
+ "loss": 0.2137,
443
+ "step": 520
444
+ },
445
+ {
446
+ "epoch": 1.2942612942612943,
447
+ "grad_norm": 15.89400577545166,
448
+ "learning_rate": 1.9174690508940855e-05,
449
+ "loss": 0.2309,
450
+ "step": 530
451
+ },
452
+ {
453
+ "epoch": 1.3186813186813187,
454
+ "grad_norm": 15.406135559082031,
455
+ "learning_rate": 1.889958734525447e-05,
456
+ "loss": 0.2548,
457
+ "step": 540
458
+ },
459
+ {
460
+ "epoch": 1.3431013431013432,
461
+ "grad_norm": 20.590370178222656,
462
+ "learning_rate": 1.862448418156809e-05,
463
+ "loss": 0.1266,
464
+ "step": 550
465
+ },
466
+ {
467
+ "epoch": 1.3675213675213675,
468
+ "grad_norm": 19.7510929107666,
469
+ "learning_rate": 1.8349381017881708e-05,
470
+ "loss": 0.3163,
471
+ "step": 560
472
+ },
473
+ {
474
+ "epoch": 1.3919413919413919,
475
+ "grad_norm": 43.13203048706055,
476
+ "learning_rate": 1.8074277854195327e-05,
477
+ "loss": 0.19,
478
+ "step": 570
479
+ },
480
+ {
481
+ "epoch": 1.4163614163614164,
482
+ "grad_norm": 9.15944766998291,
483
+ "learning_rate": 1.7799174690508942e-05,
484
+ "loss": 0.2279,
485
+ "step": 580
486
+ },
487
+ {
488
+ "epoch": 1.4407814407814408,
489
+ "grad_norm": 8.235884666442871,
490
+ "learning_rate": 1.7524071526822558e-05,
491
+ "loss": 0.1793,
492
+ "step": 590
493
+ },
494
+ {
495
+ "epoch": 1.4652014652014653,
496
+ "grad_norm": 15.345870018005371,
497
+ "learning_rate": 1.7248968363136177e-05,
498
+ "loss": 0.1745,
499
+ "step": 600
500
+ },
501
+ {
502
+ "epoch": 1.4652014652014653,
503
+ "eval_accuracy": 0.9132559560171044,
504
+ "eval_accuracy_label_negative": 0.9027777777777778,
505
+ "eval_accuracy_label_positive": 0.9230769230769231,
506
+ "eval_f1": 0.9132306675694815,
507
+ "eval_loss": 0.2216513752937317,
508
+ "eval_precision": 0.9133037139258499,
509
+ "eval_recall": 0.9132559560171044,
510
+ "eval_runtime": 6.2687,
511
+ "eval_samples_per_second": 261.138,
512
+ "eval_steps_per_second": 16.431,
513
+ "step": 600
514
+ },
515
+ {
516
+ "epoch": 1.4896214896214897,
517
+ "grad_norm": 11.133660316467285,
518
+ "learning_rate": 1.6973865199449796e-05,
519
+ "loss": 0.1678,
520
+ "step": 610
521
+ },
522
+ {
523
+ "epoch": 1.514041514041514,
524
+ "grad_norm": 19.868358612060547,
525
+ "learning_rate": 1.669876203576341e-05,
526
+ "loss": 0.1957,
527
+ "step": 620
528
+ },
529
+ {
530
+ "epoch": 1.5384615384615383,
531
+ "grad_norm": 12.538798332214355,
532
+ "learning_rate": 1.642365887207703e-05,
533
+ "loss": 0.1615,
534
+ "step": 630
535
+ },
536
+ {
537
+ "epoch": 1.5628815628815629,
538
+ "grad_norm": 44.59722900390625,
539
+ "learning_rate": 1.614855570839065e-05,
540
+ "loss": 0.239,
541
+ "step": 640
542
+ },
543
+ {
544
+ "epoch": 1.5873015873015874,
545
+ "grad_norm": 21.872129440307617,
546
+ "learning_rate": 1.5873452544704268e-05,
547
+ "loss": 0.2026,
548
+ "step": 650
549
+ },
550
+ {
551
+ "epoch": 1.6117216117216118,
552
+ "grad_norm": 69.74796295166016,
553
+ "learning_rate": 1.5598349381017883e-05,
554
+ "loss": 0.1606,
555
+ "step": 660
556
+ },
557
+ {
558
+ "epoch": 1.636141636141636,
559
+ "grad_norm": 18.729034423828125,
560
+ "learning_rate": 1.53232462173315e-05,
561
+ "loss": 0.1394,
562
+ "step": 670
563
+ },
564
+ {
565
+ "epoch": 1.6605616605616604,
566
+ "grad_norm": 34.83360290527344,
567
+ "learning_rate": 1.5048143053645119e-05,
568
+ "loss": 0.2067,
569
+ "step": 680
570
+ },
571
+ {
572
+ "epoch": 1.684981684981685,
573
+ "grad_norm": 26.961673736572266,
574
+ "learning_rate": 1.4773039889958736e-05,
575
+ "loss": 0.2053,
576
+ "step": 690
577
+ },
578
+ {
579
+ "epoch": 1.7094017094017095,
580
+ "grad_norm": 11.258790969848633,
581
+ "learning_rate": 1.4497936726272352e-05,
582
+ "loss": 0.21,
583
+ "step": 700
584
+ },
585
+ {
586
+ "epoch": 1.7094017094017095,
587
+ "eval_accuracy": 0.9156994502138057,
588
+ "eval_accuracy_label_negative": 0.9078282828282829,
589
+ "eval_accuracy_label_positive": 0.9230769230769231,
590
+ "eval_f1": 0.9156840772951227,
591
+ "eval_loss": 0.21606621146202087,
592
+ "eval_precision": 0.9157125089385034,
593
+ "eval_recall": 0.9156994502138057,
594
+ "eval_runtime": 6.2326,
595
+ "eval_samples_per_second": 262.649,
596
+ "eval_steps_per_second": 16.526,
597
+ "step": 700
598
+ },
599
+ {
600
+ "epoch": 1.7338217338217339,
601
+ "grad_norm": 11.965163230895996,
602
+ "learning_rate": 1.4222833562585972e-05,
603
+ "loss": 0.1675,
604
+ "step": 710
605
+ },
606
+ {
607
+ "epoch": 1.7582417582417582,
608
+ "grad_norm": 9.539685249328613,
609
+ "learning_rate": 1.3947730398899588e-05,
610
+ "loss": 0.1617,
611
+ "step": 720
612
+ },
613
+ {
614
+ "epoch": 1.7826617826617825,
615
+ "grad_norm": 13.261054039001465,
616
+ "learning_rate": 1.3672627235213205e-05,
617
+ "loss": 0.1469,
618
+ "step": 730
619
+ },
620
+ {
621
+ "epoch": 1.807081807081807,
622
+ "grad_norm": 9.91487979888916,
623
+ "learning_rate": 1.3397524071526824e-05,
624
+ "loss": 0.1807,
625
+ "step": 740
626
+ },
627
+ {
628
+ "epoch": 1.8315018315018317,
629
+ "grad_norm": 4.809123992919922,
630
+ "learning_rate": 1.3122420907840441e-05,
631
+ "loss": 0.1937,
632
+ "step": 750
633
+ },
634
+ {
635
+ "epoch": 1.855921855921856,
636
+ "grad_norm": 10.304144859313965,
637
+ "learning_rate": 1.284731774415406e-05,
638
+ "loss": 0.1712,
639
+ "step": 760
640
+ },
641
+ {
642
+ "epoch": 1.8803418803418803,
643
+ "grad_norm": 9.22486400604248,
644
+ "learning_rate": 1.2572214580467677e-05,
645
+ "loss": 0.1429,
646
+ "step": 770
647
+ },
648
+ {
649
+ "epoch": 1.9047619047619047,
650
+ "grad_norm": 25.931554794311523,
651
+ "learning_rate": 1.2297111416781292e-05,
652
+ "loss": 0.1961,
653
+ "step": 780
654
+ },
655
+ {
656
+ "epoch": 1.9291819291819292,
657
+ "grad_norm": 21.258495330810547,
658
+ "learning_rate": 1.2022008253094913e-05,
659
+ "loss": 0.2019,
660
+ "step": 790
661
+ },
662
+ {
663
+ "epoch": 1.9536019536019538,
664
+ "grad_norm": 6.851562023162842,
665
+ "learning_rate": 1.1746905089408529e-05,
666
+ "loss": 0.1349,
667
+ "step": 800
668
+ },
669
+ {
670
+ "epoch": 1.9536019536019538,
671
+ "eval_accuracy": 0.9242516799022602,
672
+ "eval_accuracy_label_negative": 0.9078282828282829,
673
+ "eval_accuracy_label_positive": 0.9396449704142011,
674
+ "eval_f1": 0.9242049416831661,
675
+ "eval_loss": 0.2092478722333908,
676
+ "eval_precision": 0.9244931103347949,
677
+ "eval_recall": 0.9242516799022602,
678
+ "eval_runtime": 6.2401,
679
+ "eval_samples_per_second": 262.338,
680
+ "eval_steps_per_second": 16.506,
681
+ "step": 800
682
+ },
683
+ {
684
+ "epoch": 1.978021978021978,
685
+ "grad_norm": 27.77749252319336,
686
+ "learning_rate": 1.1471801925722146e-05,
687
+ "loss": 0.2208,
688
+ "step": 810
689
+ },
690
+ {
691
+ "epoch": 2.0024420024420024,
692
+ "grad_norm": 9.1483154296875,
693
+ "learning_rate": 1.1196698762035765e-05,
694
+ "loss": 0.1494,
695
+ "step": 820
696
+ },
697
+ {
698
+ "epoch": 2.0268620268620268,
699
+ "grad_norm": 7.372486591339111,
700
+ "learning_rate": 1.0921595598349382e-05,
701
+ "loss": 0.1161,
702
+ "step": 830
703
+ },
704
+ {
705
+ "epoch": 2.051282051282051,
706
+ "grad_norm": 9.255379676818848,
707
+ "learning_rate": 1.0646492434663e-05,
708
+ "loss": 0.1054,
709
+ "step": 840
710
+ },
711
+ {
712
+ "epoch": 2.075702075702076,
713
+ "grad_norm": 14.69979476928711,
714
+ "learning_rate": 1.0371389270976618e-05,
715
+ "loss": 0.127,
716
+ "step": 850
717
+ },
718
+ {
719
+ "epoch": 2.1001221001221,
720
+ "grad_norm": 5.8154473304748535,
721
+ "learning_rate": 1.0096286107290235e-05,
722
+ "loss": 0.1329,
723
+ "step": 860
724
+ },
725
+ {
726
+ "epoch": 2.1245421245421245,
727
+ "grad_norm": 8.349048614501953,
728
+ "learning_rate": 9.821182943603852e-06,
729
+ "loss": 0.0872,
730
+ "step": 870
731
+ },
732
+ {
733
+ "epoch": 2.148962148962149,
734
+ "grad_norm": 7.116409778594971,
735
+ "learning_rate": 9.54607977991747e-06,
736
+ "loss": 0.0743,
737
+ "step": 880
738
+ },
739
+ {
740
+ "epoch": 2.173382173382173,
741
+ "grad_norm": 2.7027432918548584,
742
+ "learning_rate": 9.270976616231088e-06,
743
+ "loss": 0.1437,
744
+ "step": 890
745
+ },
746
+ {
747
+ "epoch": 2.197802197802198,
748
+ "grad_norm": 13.962987899780273,
749
+ "learning_rate": 8.995873452544705e-06,
750
+ "loss": 0.1795,
751
+ "step": 900
752
+ },
753
+ {
754
+ "epoch": 2.197802197802198,
755
+ "eval_accuracy": 0.9175320708613317,
756
+ "eval_accuracy_label_negative": 0.9431818181818182,
757
+ "eval_accuracy_label_positive": 0.893491124260355,
758
+ "eval_f1": 0.9175431498623747,
759
+ "eval_loss": 0.24922694265842438,
760
+ "eval_precision": 0.918941636944056,
761
+ "eval_recall": 0.9175320708613317,
762
+ "eval_runtime": 6.239,
763
+ "eval_samples_per_second": 262.38,
764
+ "eval_steps_per_second": 16.509,
765
+ "step": 900
766
+ },
767
+ {
768
+ "epoch": 2.2222222222222223,
769
+ "grad_norm": 1.1736209392547607,
770
+ "learning_rate": 8.720770288858322e-06,
771
+ "loss": 0.1549,
772
+ "step": 910
773
+ },
774
+ {
775
+ "epoch": 2.2466422466422467,
776
+ "grad_norm": 9.85667610168457,
777
+ "learning_rate": 8.44566712517194e-06,
778
+ "loss": 0.1192,
779
+ "step": 920
780
+ },
781
+ {
782
+ "epoch": 2.271062271062271,
783
+ "grad_norm": 22.14609146118164,
784
+ "learning_rate": 8.170563961485558e-06,
785
+ "loss": 0.144,
786
+ "step": 930
787
+ },
788
+ {
789
+ "epoch": 2.2954822954822953,
790
+ "grad_norm": 1.3833993673324585,
791
+ "learning_rate": 7.895460797799176e-06,
792
+ "loss": 0.1299,
793
+ "step": 940
794
+ },
795
+ {
796
+ "epoch": 2.3199023199023197,
797
+ "grad_norm": 18.047609329223633,
798
+ "learning_rate": 7.620357634112793e-06,
799
+ "loss": 0.1161,
800
+ "step": 950
801
+ },
802
+ {
803
+ "epoch": 2.3443223443223444,
804
+ "grad_norm": 26.69508171081543,
805
+ "learning_rate": 7.345254470426411e-06,
806
+ "loss": 0.0901,
807
+ "step": 960
808
+ },
809
+ {
810
+ "epoch": 2.3687423687423688,
811
+ "grad_norm": 2.519742965698242,
812
+ "learning_rate": 7.070151306740029e-06,
813
+ "loss": 0.0839,
814
+ "step": 970
815
+ },
816
+ {
817
+ "epoch": 2.393162393162393,
818
+ "grad_norm": 51.8133659362793,
819
+ "learning_rate": 6.795048143053645e-06,
820
+ "loss": 0.156,
821
+ "step": 980
822
+ },
823
+ {
824
+ "epoch": 2.4175824175824174,
825
+ "grad_norm": 31.978530883789062,
826
+ "learning_rate": 6.519944979367263e-06,
827
+ "loss": 0.1026,
828
+ "step": 990
829
+ },
830
+ {
831
+ "epoch": 2.442002442002442,
832
+ "grad_norm": 35.09687042236328,
833
+ "learning_rate": 6.244841815680881e-06,
834
+ "loss": 0.107,
835
+ "step": 1000
836
+ },
837
+ {
838
+ "epoch": 2.442002442002442,
839
+ "eval_accuracy": 0.9120342089187539,
840
+ "eval_accuracy_label_negative": 0.9595959595959596,
841
+ "eval_accuracy_label_positive": 0.8674556213017751,
842
+ "eval_f1": 0.911963285711659,
843
+ "eval_loss": 0.274323433637619,
844
+ "eval_precision": 0.9162668443060722,
845
+ "eval_recall": 0.9120342089187539,
846
+ "eval_runtime": 6.2476,
847
+ "eval_samples_per_second": 262.022,
848
+ "eval_steps_per_second": 16.486,
849
+ "step": 1000
850
+ },
851
+ {
852
+ "epoch": 2.4664224664224665,
853
+ "grad_norm": 63.01274108886719,
854
+ "learning_rate": 5.969738651994499e-06,
855
+ "loss": 0.1913,
856
+ "step": 1010
857
+ },
858
+ {
859
+ "epoch": 2.490842490842491,
860
+ "grad_norm": 59.207305908203125,
861
+ "learning_rate": 5.6946354883081155e-06,
862
+ "loss": 0.1108,
863
+ "step": 1020
864
+ },
865
+ {
866
+ "epoch": 2.515262515262515,
867
+ "grad_norm": 11.869065284729004,
868
+ "learning_rate": 5.4195323246217335e-06,
869
+ "loss": 0.0884,
870
+ "step": 1030
871
+ },
872
+ {
873
+ "epoch": 2.5396825396825395,
874
+ "grad_norm": 12.766225814819336,
875
+ "learning_rate": 5.1444291609353515e-06,
876
+ "loss": 0.1491,
877
+ "step": 1040
878
+ },
879
+ {
880
+ "epoch": 2.564102564102564,
881
+ "grad_norm": 5.824493408203125,
882
+ "learning_rate": 4.869325997248969e-06,
883
+ "loss": 0.1633,
884
+ "step": 1050
885
+ },
886
+ {
887
+ "epoch": 2.5885225885225887,
888
+ "grad_norm": 6.6170477867126465,
889
+ "learning_rate": 4.594222833562587e-06,
890
+ "loss": 0.1276,
891
+ "step": 1060
892
+ },
893
+ {
894
+ "epoch": 2.612942612942613,
895
+ "grad_norm": 9.731184959411621,
896
+ "learning_rate": 4.319119669876204e-06,
897
+ "loss": 0.1023,
898
+ "step": 1070
899
+ },
900
+ {
901
+ "epoch": 2.6373626373626373,
902
+ "grad_norm": 3.0301451683044434,
903
+ "learning_rate": 4.044016506189822e-06,
904
+ "loss": 0.1082,
905
+ "step": 1080
906
+ },
907
+ {
908
+ "epoch": 2.6617826617826617,
909
+ "grad_norm": 3.955033779144287,
910
+ "learning_rate": 3.768913342503439e-06,
911
+ "loss": 0.1763,
912
+ "step": 1090
913
+ },
914
+ {
915
+ "epoch": 2.6862026862026864,
916
+ "grad_norm": 46.200225830078125,
917
+ "learning_rate": 3.4938101788170562e-06,
918
+ "loss": 0.08,
919
+ "step": 1100
920
+ },
921
+ {
922
+ "epoch": 2.6862026862026864,
923
+ "eval_accuracy": 0.9187538179596824,
924
+ "eval_accuracy_label_negative": 0.9431818181818182,
925
+ "eval_accuracy_label_positive": 0.8958579881656805,
926
+ "eval_f1": 0.9187668553379099,
927
+ "eval_loss": 0.2606331408023834,
928
+ "eval_precision": 0.9200482702030894,
929
+ "eval_recall": 0.9187538179596824,
930
+ "eval_runtime": 6.2203,
931
+ "eval_samples_per_second": 263.172,
932
+ "eval_steps_per_second": 16.559,
933
+ "step": 1100
934
+ },
935
+ {
936
+ "epoch": 2.7106227106227108,
937
+ "grad_norm": 42.084537506103516,
938
+ "learning_rate": 3.2187070151306742e-06,
939
+ "loss": 0.1241,
940
+ "step": 1110
941
+ },
942
+ {
943
+ "epoch": 2.735042735042735,
944
+ "grad_norm": 11.397581100463867,
945
+ "learning_rate": 2.943603851444292e-06,
946
+ "loss": 0.0858,
947
+ "step": 1120
948
+ },
949
+ {
950
+ "epoch": 2.7594627594627594,
951
+ "grad_norm": 58.64878845214844,
952
+ "learning_rate": 2.6685006877579094e-06,
953
+ "loss": 0.1114,
954
+ "step": 1130
955
+ },
956
+ {
957
+ "epoch": 2.7838827838827838,
958
+ "grad_norm": 43.395687103271484,
959
+ "learning_rate": 2.393397524071527e-06,
960
+ "loss": 0.1682,
961
+ "step": 1140
962
+ },
963
+ {
964
+ "epoch": 2.808302808302808,
965
+ "grad_norm": 17.384784698486328,
966
+ "learning_rate": 2.1182943603851446e-06,
967
+ "loss": 0.1692,
968
+ "step": 1150
969
+ },
970
+ {
971
+ "epoch": 2.832722832722833,
972
+ "grad_norm": 24.320571899414062,
973
+ "learning_rate": 1.8431911966987622e-06,
974
+ "loss": 0.1473,
975
+ "step": 1160
976
+ },
977
+ {
978
+ "epoch": 2.857142857142857,
979
+ "grad_norm": 2.8611717224121094,
980
+ "learning_rate": 1.56808803301238e-06,
981
+ "loss": 0.1429,
982
+ "step": 1170
983
+ },
984
+ {
985
+ "epoch": 2.8815628815628815,
986
+ "grad_norm": 16.274402618408203,
987
+ "learning_rate": 1.2929848693259976e-06,
988
+ "loss": 0.0589,
989
+ "step": 1180
990
+ },
991
+ {
992
+ "epoch": 2.905982905982906,
993
+ "grad_norm": 12.312983512878418,
994
+ "learning_rate": 1.017881705639615e-06,
995
+ "loss": 0.113,
996
+ "step": 1190
997
+ },
998
+ {
999
+ "epoch": 2.9304029304029307,
1000
+ "grad_norm": 2.3755383491516113,
1001
+ "learning_rate": 7.427785419532325e-07,
1002
+ "loss": 0.1275,
1003
+ "step": 1200
1004
+ },
1005
+ {
1006
+ "epoch": 2.9304029304029307,
1007
+ "eval_accuracy": 0.9254734270006109,
1008
+ "eval_accuracy_label_negative": 0.9166666666666666,
1009
+ "eval_accuracy_label_positive": 0.9337278106508876,
1010
+ "eval_f1": 0.9254558801955471,
1011
+ "eval_loss": 0.2550033628940582,
1012
+ "eval_precision": 0.925507524308242,
1013
+ "eval_recall": 0.9254734270006109,
1014
+ "eval_runtime": 6.2179,
1015
+ "eval_samples_per_second": 263.27,
1016
+ "eval_steps_per_second": 16.565,
1017
+ "step": 1200
1018
+ },
1019
+ {
1020
+ "epoch": 2.954822954822955,
1021
+ "grad_norm": 11.446648597717285,
1022
+ "learning_rate": 4.6767537826685014e-07,
1023
+ "loss": 0.0984,
1024
+ "step": 1210
1025
+ },
1026
+ {
1027
+ "epoch": 2.9792429792429793,
1028
+ "grad_norm": 6.963866710662842,
1029
+ "learning_rate": 1.925722145804677e-07,
1030
+ "loss": 0.1507,
1031
+ "step": 1220
1032
+ },
1033
+ {
1034
+ "epoch": 2.9963369963369964,
1035
+ "step": 1227,
1036
+ "total_flos": 157212915612480.0,
1037
+ "train_loss": 0.22916113538477803,
1038
+ "train_runtime": 681.0988,
1039
+ "train_samples_per_second": 57.657,
1040
+ "train_steps_per_second": 1.802
1041
+ },
1042
+ {
1043
+ "epoch": 2.9963369963369964,
1044
+ "eval_accuracy": 0.9260843005497862,
1045
+ "eval_accuracy_label_negative": 0.9255050505050505,
1046
+ "eval_accuracy_label_positive": 0.9266272189349113,
1047
+ "eval_f1": 0.9260884418426176,
1048
+ "eval_loss": 0.25100183486938477,
1049
+ "eval_precision": 0.9260988078725894,
1050
+ "eval_recall": 0.9260843005497862,
1051
+ "eval_runtime": 6.2023,
1052
+ "eval_samples_per_second": 263.933,
1053
+ "eval_steps_per_second": 16.607,
1054
+ "step": 1227
1055
+ }
1056
+ ],
1057
+ "logging_steps": 10,
1058
+ "max_steps": 1227,
1059
+ "num_input_tokens_seen": 0,
1060
+ "num_train_epochs": 3,
1061
+ "save_steps": 1000,
1062
+ "stateful_callbacks": {
1063
+ "TrainerControl": {
1064
+ "args": {
1065
+ "should_epoch_stop": false,
1066
+ "should_evaluate": false,
1067
+ "should_log": false,
1068
+ "should_save": true,
1069
+ "should_training_stop": false
1070
+ },
1071
+ "attributes": {}
1072
+ }
1073
+ },
1074
+ "total_flos": 157212915612480.0,
1075
+ "train_batch_size": 16,
1076
+ "trial_name": null,
1077
+ "trial_params": null
1078
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77dd615ba71b2a8d8c66ba94dd7fd0658b87a82877f81bfc34cc2e72b1f9dc5c
3
+ size 5048