File size: 3,619 Bytes
0cc8a43 cba5c1e 0cc8a43 6125d7f cba5c1e 6125d7f 0cc8a43 6125d7f cba5c1e 6125d7f 0cc8a43 6125d7f 0cc8a43 6125d7f 0cc8a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: apache-2.0
pipeline_tag: feature-extraction
---
# UniTok: A Unified Tokenizer for Visual Generation and Understanding
This repository contains UniTok, a unified visual tokenizer for both image generation and understanding tasks, as presented in [UniTok: A Unified Tokenizer for Visual Generation and Understanding](https://hf.co/papers/2502.20321).
Project Page: https://foundationvision.github.io/UniTok/ <br>
Code: https://github.com/FoundationVision/UniTok
<p align="center">
<img src="https://github.com/FoundationVision/UniTok/blob/main/assets/teaser.png?raw=true" width=93%>
<p>
UniTok encodes fine-grained details for generation and captures high-level semantics for understanding. It's compatible with autoregressive generative models (e.g., LlamaGen), multimodal understanding models (e.g., LLaVA), and unified MLLMs (e.g., Chameleon and Liquid).
Built upon UniTok, we construct an MLLM capable of both multimodal generation and understanding, which sets a new state-of-the-art among unified autoregressive MLLMs. The weights of our MLLM will be released soon.
<p align="center">
<img src="https://github.com/FoundationVision/UniTok/blob/main/assets/samples.png?raw=true" width=93%>
<p>
## Performance
<table>
<thead>
<tr>
<th>Method</th>
<th>#Tokens</th>
<th>rFID ↓</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="4"><i>VQVAE Model</i></td>
</tr>
<tr align="center">
<td>VQ-GAN</td>
<td>256</td>
<td>4.98</td>
<td>--</td>
</tr>
<tr align="center">
<td>RQ-VAE</td>
<td>256</td>
<td>1.30</td>
<td>--</td>
</tr>
<tr align="center">
<td>VAR</td>
<td>680</td>
<td>0.90</td>
<td>--</td>
</tr>
<tr>
<td colspan="4"><i>CLIP Model</i></td>
</tr>
<tr align="center">
<td>CLIP</td>
<td>256</td>
<td>--</td>
<td>76.2</td>
</tr>
<tr align="center">
<td>SigLIP</td>
<td>256</td>
<td>--</td>
<td>80.5</td>
</tr>
<tr align="center">
<td>ViTamin</td>
<td>256</td>
<td>--</td>
<td>81.2</td>
</tr>
<tr>
<td colspan="4"><i>Unified Model</i></td>
</tr>
<tr align="center">
<td>TokenFlow †</td>
<td>680</td>
<td>1.37</td>
<td>--</td>
</tr>
<tr align="center">
<td>VILA-U †</td>
<td>256</td>
<td>1.80</td>
<td>73.3</td>
</tr>
<tr align="center">
<td>UniTok</td>
<td>256</td>
<td>0.39</td>
<td>70.5</td>
</tr>
<tr align="center">
<td>UniTok †</td>
<td>256</td>
<td>0.38</td>
<td>78.6</td>
</tr>
</tbody>
</table>
This repo is used for hosting UniTok's checkpoints.
For more details or tutorials see https://github.com/FoundationVision/UniTok.
## Citation
```bibtex
@article{unitok,
title={UniTok: A Unified Tokenizer for Visual Generation and Understanding},
author={Ma, Chuofan and Jiang, Yi and Wu, Junfeng and Yang, Jihan and Yu, Xin and Yuan, Zehuan and Peng, Bingyue and Qi, Xiaojuan},
journal={arXiv preprint arXiv:2502.20321},
year={2025}
}
``` |