alexwengg commited on
Commit
1faf3bd
·
verified ·
1 Parent(s): bf5d140

Upload 5 files

Browse files
silero_vad.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35c6d0bd3f8dd431fed72221005853ffe3621af1b550951093c41d0b918d210e
3
+ size 243
silero_vad.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca7f6a0ab7a349477fed1864e6cf7cb6adf611f017c0c5f0218c694d25e1434a
3
+ size 422
silero_vad.mlmodelc/metadata.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "shortDescription" : "VAD with SE modules trained on MUSAN (86.47% accuracy)",
4
+ "metadataOutputVersion" : "3.0",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1]",
13
+ "name" : "vad_probability",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "version" : "2.0",
18
+ "modelParameters" : [
19
+
20
+ ],
21
+ "author" : "Silero VAD with Trained SE Modules",
22
+ "specificationVersion" : 6,
23
+ "storagePrecision" : "Mixed (Float16, Float32)",
24
+ "mlProgramOperationTypeHistogram" : {
25
+ "Concat" : 4,
26
+ "Lstm" : 1,
27
+ "Linear" : 14,
28
+ "SliceByIndex" : 3,
29
+ "LayerNorm" : 1,
30
+ "Pow" : 6,
31
+ "Stack" : 1,
32
+ "Transpose" : 3,
33
+ "Relu" : 9,
34
+ "ReduceMean" : 5,
35
+ "Cast" : 4,
36
+ "Reshape" : 8,
37
+ "Add" : 6,
38
+ "Sqrt" : 3,
39
+ "Sigmoid" : 5,
40
+ "Mul" : 5,
41
+ "Conv" : 5,
42
+ "Squeeze" : 1
43
+ },
44
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
45
+ "stateSchema" : [
46
+
47
+ ],
48
+ "isUpdatable" : "0",
49
+ "availability" : {
50
+ "macOS" : "12.0",
51
+ "tvOS" : "15.0",
52
+ "visionOS" : "1.0",
53
+ "watchOS" : "8.0",
54
+ "iOS" : "15.0",
55
+ "macCatalyst" : "15.0"
56
+ },
57
+ "modelType" : {
58
+ "name" : "MLModelType_mlProgram"
59
+ },
60
+ "inputSchema" : [
61
+ {
62
+ "hasShapeFlexibility" : "0",
63
+ "isOptional" : "0",
64
+ "dataType" : "Float32",
65
+ "formattedType" : "MultiArray (Float32 1 × 512)",
66
+ "shortDescription" : "",
67
+ "shape" : "[1, 512]",
68
+ "name" : "audio_chunk",
69
+ "type" : "MultiArray"
70
+ }
71
+ ],
72
+ "userDefinedMetadata" : {
73
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
74
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
75
+ "com.github.apple.coremltools.version" : "8.3.0"
76
+ },
77
+ "generatedClassName" : "silero_vad_se_trained",
78
+ "method" : "predict"
79
+ }
80
+ ]
silero_vad.mlmodelc/model.mil ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios15>(tensor<fp32, [1, 512]> audio_chunk) {
5
+ tensor<int32, [2]> frame_1_begin_0 = const()[name = tensor<string, []>("frame_1_begin_0"), val = tensor<int32, [2]>([0, 0])];
6
+ tensor<int32, [2]> frame_1_end_0 = const()[name = tensor<string, []>("frame_1_end_0"), val = tensor<int32, [2]>([1, 256])];
7
+ tensor<bool, [2]> frame_1_end_mask_0 = const()[name = tensor<string, []>("frame_1_end_mask_0"), val = tensor<bool, [2]>([true, false])];
8
+ tensor<string, []> audio_chunk_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_chunk_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
+ tensor<fp16, [1, 512]> audio_chunk_to_fp16 = cast(dtype = audio_chunk_to_fp16_dtype_0, x = audio_chunk)[name = tensor<string, []>("cast_11")];
10
+ tensor<fp16, [1, 256]> frame_1_cast_fp16 = slice_by_index(begin = frame_1_begin_0, end = frame_1_end_0, end_mask = frame_1_end_mask_0, x = audio_chunk_to_fp16)[name = tensor<string, []>("frame_1_cast_fp16")];
11
+ tensor<int32, [2]> frame_3_begin_0 = const()[name = tensor<string, []>("frame_3_begin_0"), val = tensor<int32, [2]>([0, 128])];
12
+ tensor<int32, [2]> frame_3_end_0 = const()[name = tensor<string, []>("frame_3_end_0"), val = tensor<int32, [2]>([1, 384])];
13
+ tensor<bool, [2]> frame_3_end_mask_0 = const()[name = tensor<string, []>("frame_3_end_mask_0"), val = tensor<bool, [2]>([true, false])];
14
+ tensor<fp16, [1, 256]> frame_3_cast_fp16 = slice_by_index(begin = frame_3_begin_0, end = frame_3_end_0, end_mask = frame_3_end_mask_0, x = audio_chunk_to_fp16)[name = tensor<string, []>("frame_3_cast_fp16")];
15
+ tensor<int32, [2]> frame_begin_0 = const()[name = tensor<string, []>("frame_begin_0"), val = tensor<int32, [2]>([0, 256])];
16
+ tensor<int32, [2]> frame_end_0 = const()[name = tensor<string, []>("frame_end_0"), val = tensor<int32, [2]>([1, 1])];
17
+ tensor<bool, [2]> frame_end_mask_0 = const()[name = tensor<string, []>("frame_end_mask_0"), val = tensor<bool, [2]>([true, true])];
18
+ tensor<fp16, [1, 256]> frame_cast_fp16 = slice_by_index(begin = frame_begin_0, end = frame_end_0, end_mask = frame_end_mask_0, x = audio_chunk_to_fp16)[name = tensor<string, []>("frame_cast_fp16")];
19
+ tensor<fp16, [129, 256]> var_26_to_fp16 = const()[name = tensor<string, []>("op_26_to_fp16"), val = tensor<fp16, [129, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
20
+ tensor<fp16, [129]> var_38_bias_0_to_fp16 = const()[name = tensor<string, []>("op_38_bias_0_to_fp16"), val = tensor<fp16, [129]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(66176)))];
21
+ tensor<fp16, [1, 129]> var_38_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_26_to_fp16, x = frame_1_cast_fp16)[name = tensor<string, []>("op_38_cast_fp16")];
22
+ tensor<fp16, [129, 256]> var_29_to_fp16 = const()[name = tensor<string, []>("op_29_to_fp16"), val = tensor<fp16, [129, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(66560)))];
23
+ tensor<fp16, [1, 129]> var_40_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_29_to_fp16, x = frame_1_cast_fp16)[name = tensor<string, []>("op_40_cast_fp16")];
24
+ tensor<fp16, []> var_20_promoted_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
25
+ tensor<fp16, [1, 129]> var_41_cast_fp16 = pow(x = var_38_cast_fp16, y = var_20_promoted_to_fp16)[name = tensor<string, []>("op_41_cast_fp16")];
26
+ tensor<fp16, []> var_20_promoted_1_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_1_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
27
+ tensor<fp16, [1, 129]> var_42_cast_fp16 = pow(x = var_40_cast_fp16, y = var_20_promoted_1_to_fp16)[name = tensor<string, []>("op_42_cast_fp16")];
28
+ tensor<fp16, [1, 129]> var_43_cast_fp16 = add(x = var_41_cast_fp16, y = var_42_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
29
+ tensor<fp16, []> var_44_to_fp16 = const()[name = tensor<string, []>("op_44_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
30
+ tensor<fp16, [1, 129]> var_45_cast_fp16 = add(x = var_43_cast_fp16, y = var_44_to_fp16)[name = tensor<string, []>("op_45_cast_fp16")];
31
+ tensor<fp16, [1, 129]> var_46_cast_fp16 = sqrt(x = var_45_cast_fp16)[name = tensor<string, []>("op_46_cast_fp16")];
32
+ tensor<fp16, [1, 129]> var_48_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_26_to_fp16, x = frame_3_cast_fp16)[name = tensor<string, []>("op_48_cast_fp16")];
33
+ tensor<fp16, [1, 129]> var_50_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_29_to_fp16, x = frame_3_cast_fp16)[name = tensor<string, []>("op_50_cast_fp16")];
34
+ tensor<fp16, []> var_20_promoted_2_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_2_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
35
+ tensor<fp16, [1, 129]> var_51_cast_fp16 = pow(x = var_48_cast_fp16, y = var_20_promoted_2_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
36
+ tensor<fp16, []> var_20_promoted_3_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_3_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
37
+ tensor<fp16, [1, 129]> var_52_cast_fp16 = pow(x = var_50_cast_fp16, y = var_20_promoted_3_to_fp16)[name = tensor<string, []>("op_52_cast_fp16")];
38
+ tensor<fp16, [1, 129]> var_53_cast_fp16 = add(x = var_51_cast_fp16, y = var_52_cast_fp16)[name = tensor<string, []>("op_53_cast_fp16")];
39
+ tensor<fp16, []> var_54_to_fp16 = const()[name = tensor<string, []>("op_54_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
40
+ tensor<fp16, [1, 129]> var_55_cast_fp16 = add(x = var_53_cast_fp16, y = var_54_to_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
41
+ tensor<fp16, [1, 129]> var_56_cast_fp16 = sqrt(x = var_55_cast_fp16)[name = tensor<string, []>("op_56_cast_fp16")];
42
+ tensor<fp16, [1, 129]> var_58_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_26_to_fp16, x = frame_cast_fp16)[name = tensor<string, []>("op_58_cast_fp16")];
43
+ tensor<fp16, [1, 129]> var_60_cast_fp16 = linear(bias = var_38_bias_0_to_fp16, weight = var_29_to_fp16, x = frame_cast_fp16)[name = tensor<string, []>("op_60_cast_fp16")];
44
+ tensor<fp16, []> var_20_promoted_4_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_4_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
45
+ tensor<fp16, [1, 129]> var_61_cast_fp16 = pow(x = var_58_cast_fp16, y = var_20_promoted_4_to_fp16)[name = tensor<string, []>("op_61_cast_fp16")];
46
+ tensor<fp16, []> var_20_promoted_5_to_fp16 = const()[name = tensor<string, []>("op_20_promoted_5_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
47
+ tensor<fp16, [1, 129]> var_62_cast_fp16 = pow(x = var_60_cast_fp16, y = var_20_promoted_5_to_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
48
+ tensor<fp16, [1, 129]> var_63_cast_fp16 = add(x = var_61_cast_fp16, y = var_62_cast_fp16)[name = tensor<string, []>("op_63_cast_fp16")];
49
+ tensor<fp16, []> var_64_to_fp16 = const()[name = tensor<string, []>("op_64_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
50
+ tensor<fp16, [1, 129]> var_65_cast_fp16 = add(x = var_63_cast_fp16, y = var_64_to_fp16)[name = tensor<string, []>("op_65_cast_fp16")];
51
+ tensor<fp16, [1, 129]> magnitude_cast_fp16 = sqrt(x = var_65_cast_fp16)[name = tensor<string, []>("magnitude_cast_fp16")];
52
+ tensor<int32, []> input_1_axis_0 = const()[name = tensor<string, []>("input_1_axis_0"), val = tensor<int32, []>(2)];
53
+ tensor<fp16, [1, 129, 3]> input_1_cast_fp16 = stack(axis = input_1_axis_0, values = (var_46_cast_fp16, var_56_cast_fp16, magnitude_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
54
+ tensor<string, []> x_1_pad_type_0 = const()[name = tensor<string, []>("x_1_pad_type_0"), val = tensor<string, []>("custom")];
55
+ tensor<int32, [2]> x_1_pad_0 = const()[name = tensor<string, []>("x_1_pad_0"), val = tensor<int32, [2]>([1, 1])];
56
+ tensor<int32, [1]> x_1_strides_0 = const()[name = tensor<string, []>("x_1_strides_0"), val = tensor<int32, [1]>([1])];
57
+ tensor<int32, [1]> x_1_dilations_0 = const()[name = tensor<string, []>("x_1_dilations_0"), val = tensor<int32, [1]>([1])];
58
+ tensor<int32, []> x_1_groups_0 = const()[name = tensor<string, []>("x_1_groups_0"), val = tensor<int32, []>(1)];
59
+ tensor<fp16, [128, 129, 3]> vad_encoder_encoder_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_conv_weight_to_fp16"), val = tensor<fp16, [128, 129, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132672)))];
60
+ tensor<fp16, [128]> vad_encoder_encoder_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_conv_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231808)))];
61
+ tensor<fp16, [1, 128, 3]> x_1_cast_fp16 = conv(bias = vad_encoder_encoder_0_conv_bias_to_fp16, dilations = x_1_dilations_0, groups = x_1_groups_0, pad = x_1_pad_0, pad_type = x_1_pad_type_0, strides = x_1_strides_0, weight = vad_encoder_encoder_0_conv_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("x_1_cast_fp16")];
62
+ tensor<int32, [1]> reduce_mean_0_axes_0 = const()[name = tensor<string, []>("reduce_mean_0_axes_0"), val = tensor<int32, [1]>([-1])];
63
+ tensor<bool, []> reduce_mean_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_0_keep_dims_0"), val = tensor<bool, []>(true)];
64
+ tensor<fp16, [1, 128, 1]> reduce_mean_0_cast_fp16 = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = x_1_cast_fp16)[name = tensor<string, []>("reduce_mean_0_cast_fp16")];
65
+ tensor<int32, []> concat_0_axis_0 = const()[name = tensor<string, []>("concat_0_axis_0"), val = tensor<int32, []>(-1)];
66
+ tensor<bool, []> concat_0_interleave_0 = const()[name = tensor<string, []>("concat_0_interleave_0"), val = tensor<bool, []>(false)];
67
+ tensor<fp16, [1, 128, 1]> concat_0_cast_fp16 = concat(axis = concat_0_axis_0, interleave = concat_0_interleave_0, values = reduce_mean_0_cast_fp16)[name = tensor<string, []>("concat_0_cast_fp16")];
68
+ tensor<int32, [2]> var_92 = const()[name = tensor<string, []>("op_92"), val = tensor<int32, [2]>([1, 128])];
69
+ tensor<fp16, [1, 128]> input_3_cast_fp16 = reshape(shape = var_92, x = concat_0_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
70
+ tensor<fp16, [16, 128]> vad_encoder_encoder_0_se_fc1_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_se_fc1_weight_to_fp16"), val = tensor<fp16, [16, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(232128)))];
71
+ tensor<fp16, [16]> vad_encoder_encoder_0_se_fc1_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_se_fc1_bias_to_fp16"), val = tensor<fp16, [16]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(236288)))];
72
+ tensor<fp16, [1, 16]> linear_0_cast_fp16 = linear(bias = vad_encoder_encoder_0_se_fc1_bias_to_fp16, weight = vad_encoder_encoder_0_se_fc1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
73
+ tensor<fp16, [1, 16]> input_7_cast_fp16 = relu(x = linear_0_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
74
+ tensor<fp16, [128, 16]> vad_encoder_encoder_0_se_fc2_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_se_fc2_weight_to_fp16"), val = tensor<fp16, [128, 16]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(236416)))];
75
+ tensor<fp16, [128]> vad_encoder_encoder_0_se_fc2_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_0_se_fc2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(240576)))];
76
+ tensor<fp16, [1, 128]> linear_1_cast_fp16 = linear(bias = vad_encoder_encoder_0_se_fc2_bias_to_fp16, weight = vad_encoder_encoder_0_se_fc2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
77
+ tensor<fp16, [1, 128]> y_1_cast_fp16 = sigmoid(x = linear_1_cast_fp16)[name = tensor<string, []>("y_1_cast_fp16")];
78
+ tensor<int32, [3]> var_102 = const()[name = tensor<string, []>("op_102"), val = tensor<int32, [3]>([1, 128, 1])];
79
+ tensor<fp16, [1, 128, 1]> y_3_cast_fp16 = reshape(shape = var_102, x = y_1_cast_fp16)[name = tensor<string, []>("y_3_cast_fp16")];
80
+ tensor<fp16, [1, 128, 3]> input_11_cast_fp16 = mul(x = x_1_cast_fp16, y = y_3_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
81
+ tensor<fp16, [1, 128, 3]> input_13_cast_fp16 = relu(x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
82
+ tensor<string, []> x_3_pad_type_0 = const()[name = tensor<string, []>("x_3_pad_type_0"), val = tensor<string, []>("custom")];
83
+ tensor<int32, [2]> x_3_pad_0 = const()[name = tensor<string, []>("x_3_pad_0"), val = tensor<int32, [2]>([1, 1])];
84
+ tensor<int32, [1]> x_3_strides_0 = const()[name = tensor<string, []>("x_3_strides_0"), val = tensor<int32, [1]>([1])];
85
+ tensor<int32, [1]> x_3_dilations_0 = const()[name = tensor<string, []>("x_3_dilations_0"), val = tensor<int32, [1]>([1])];
86
+ tensor<int32, []> x_3_groups_0 = const()[name = tensor<string, []>("x_3_groups_0"), val = tensor<int32, []>(1)];
87
+ tensor<fp16, [64, 128, 3]> vad_encoder_encoder_1_conv_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_conv_weight_to_fp16"), val = tensor<fp16, [64, 128, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(240896)))];
88
+ tensor<fp16, [64]> vad_encoder_encoder_1_conv_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_conv_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(290112)))];
89
+ tensor<fp16, [1, 64, 3]> x_3_cast_fp16 = conv(bias = vad_encoder_encoder_1_conv_bias_to_fp16, dilations = x_3_dilations_0, groups = x_3_groups_0, pad = x_3_pad_0, pad_type = x_3_pad_type_0, strides = x_3_strides_0, weight = vad_encoder_encoder_1_conv_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("x_3_cast_fp16")];
90
+ tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
91
+ tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
92
+ tensor<fp16, [1, 64, 1]> reduce_mean_1_cast_fp16 = reduce_mean(axes = reduce_mean_1_axes_0, keep_dims = reduce_mean_1_keep_dims_0, x = x_3_cast_fp16)[name = tensor<string, []>("reduce_mean_1_cast_fp16")];
93
+ tensor<int32, []> concat_1_axis_0 = const()[name = tensor<string, []>("concat_1_axis_0"), val = tensor<int32, []>(-1)];
94
+ tensor<bool, []> concat_1_interleave_0 = const()[name = tensor<string, []>("concat_1_interleave_0"), val = tensor<bool, []>(false)];
95
+ tensor<fp16, [1, 64, 1]> concat_1_cast_fp16 = concat(axis = concat_1_axis_0, interleave = concat_1_interleave_0, values = reduce_mean_1_cast_fp16)[name = tensor<string, []>("concat_1_cast_fp16")];
96
+ tensor<int32, [2]> var_121 = const()[name = tensor<string, []>("op_121"), val = tensor<int32, [2]>([1, 64])];
97
+ tensor<fp16, [1, 64]> input_15_cast_fp16 = reshape(shape = var_121, x = concat_1_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
98
+ tensor<fp16, [8, 64]> vad_encoder_encoder_1_se_fc1_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_se_fc1_weight_to_fp16"), val = tensor<fp16, [8, 64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(290304)))];
99
+ tensor<fp16, [8]> vad_encoder_encoder_1_se_fc1_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_se_fc1_bias_to_fp16"), val = tensor<fp16, [8]>([0x1.00cp-9, 0x1.6dcp-5, 0x1.82cp-5, 0x1.054p-5, 0x1.8a4p-4, 0x1.f88p-7, 0x1.234p-5, 0x1.514p-5])];
100
+ tensor<fp16, [1, 8]> linear_2_cast_fp16 = linear(bias = vad_encoder_encoder_1_se_fc1_bias_to_fp16, weight = vad_encoder_encoder_1_se_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
101
+ tensor<fp16, [1, 8]> input_19_cast_fp16 = relu(x = linear_2_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
102
+ tensor<fp16, [64, 8]> vad_encoder_encoder_1_se_fc2_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_se_fc2_weight_to_fp16"), val = tensor<fp16, [64, 8]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(291392)))];
103
+ tensor<fp16, [64]> vad_encoder_encoder_1_se_fc2_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_1_se_fc2_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(292480)))];
104
+ tensor<fp16, [1, 64]> linear_3_cast_fp16 = linear(bias = vad_encoder_encoder_1_se_fc2_bias_to_fp16, weight = vad_encoder_encoder_1_se_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("linear_3_cast_fp16")];
105
+ tensor<fp16, [1, 64]> y_5_cast_fp16 = sigmoid(x = linear_3_cast_fp16)[name = tensor<string, []>("y_5_cast_fp16")];
106
+ tensor<int32, [3]> var_131 = const()[name = tensor<string, []>("op_131"), val = tensor<int32, [3]>([1, 64, 1])];
107
+ tensor<fp16, [1, 64, 1]> y_7_cast_fp16 = reshape(shape = var_131, x = y_5_cast_fp16)[name = tensor<string, []>("y_7_cast_fp16")];
108
+ tensor<fp16, [1, 64, 3]> input_23_cast_fp16 = mul(x = x_3_cast_fp16, y = y_7_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
109
+ tensor<fp16, [1, 64, 3]> input_25_cast_fp16 = relu(x = input_23_cast_fp16)[name = tensor<string, []>("input_25_cast_fp16")];
110
+ tensor<string, []> x_5_pad_type_0 = const()[name = tensor<string, []>("x_5_pad_type_0"), val = tensor<string, []>("custom")];
111
+ tensor<int32, [2]> x_5_pad_0 = const()[name = tensor<string, []>("x_5_pad_0"), val = tensor<int32, [2]>([1, 1])];
112
+ tensor<int32, [1]> x_5_strides_0 = const()[name = tensor<string, []>("x_5_strides_0"), val = tensor<int32, [1]>([1])];
113
+ tensor<int32, [1]> x_5_dilations_0 = const()[name = tensor<string, []>("x_5_dilations_0"), val = tensor<int32, [1]>([1])];
114
+ tensor<int32, []> x_5_groups_0 = const()[name = tensor<string, []>("x_5_groups_0"), val = tensor<int32, []>(1)];
115
+ tensor<fp16, [64, 64, 3]> vad_encoder_encoder_2_conv_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_conv_weight_to_fp16"), val = tensor<fp16, [64, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(292672)))];
116
+ tensor<fp16, [64]> vad_encoder_encoder_2_conv_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_conv_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317312)))];
117
+ tensor<fp16, [1, 64, 3]> x_5_cast_fp16 = conv(bias = vad_encoder_encoder_2_conv_bias_to_fp16, dilations = x_5_dilations_0, groups = x_5_groups_0, pad = x_5_pad_0, pad_type = x_5_pad_type_0, strides = x_5_strides_0, weight = vad_encoder_encoder_2_conv_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("x_5_cast_fp16")];
118
+ tensor<int32, [1]> reduce_mean_2_axes_0 = const()[name = tensor<string, []>("reduce_mean_2_axes_0"), val = tensor<int32, [1]>([-1])];
119
+ tensor<bool, []> reduce_mean_2_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_2_keep_dims_0"), val = tensor<bool, []>(true)];
120
+ tensor<fp16, [1, 64, 1]> reduce_mean_2_cast_fp16 = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = x_5_cast_fp16)[name = tensor<string, []>("reduce_mean_2_cast_fp16")];
121
+ tensor<int32, []> concat_2_axis_0 = const()[name = tensor<string, []>("concat_2_axis_0"), val = tensor<int32, []>(-1)];
122
+ tensor<bool, []> concat_2_interleave_0 = const()[name = tensor<string, []>("concat_2_interleave_0"), val = tensor<bool, []>(false)];
123
+ tensor<fp16, [1, 64, 1]> concat_2_cast_fp16 = concat(axis = concat_2_axis_0, interleave = concat_2_interleave_0, values = reduce_mean_2_cast_fp16)[name = tensor<string, []>("concat_2_cast_fp16")];
124
+ tensor<int32, [2]> var_150 = const()[name = tensor<string, []>("op_150"), val = tensor<int32, [2]>([1, 64])];
125
+ tensor<fp16, [1, 64]> input_27_cast_fp16 = reshape(shape = var_150, x = concat_2_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
126
+ tensor<fp16, [8, 64]> vad_encoder_encoder_2_se_fc1_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_se_fc1_weight_to_fp16"), val = tensor<fp16, [8, 64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317504)))];
127
+ tensor<fp16, [8]> vad_encoder_encoder_2_se_fc1_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_se_fc1_bias_to_fp16"), val = tensor<fp16, [8]>([0x1.41cp-7, 0x1.4e8p-5, 0x1.7ccp-5, 0x1.554p-5, 0x1.d8cp-5, -0x1.34p-11, 0x1.2f8p-5, 0x1.0ap-5])];
128
+ tensor<fp16, [1, 8]> linear_4_cast_fp16 = linear(bias = vad_encoder_encoder_2_se_fc1_bias_to_fp16, weight = vad_encoder_encoder_2_se_fc1_weight_to_fp16, x = input_27_cast_fp16)[name = tensor<string, []>("linear_4_cast_fp16")];
129
+ tensor<fp16, [1, 8]> input_31_cast_fp16 = relu(x = linear_4_cast_fp16)[name = tensor<string, []>("input_31_cast_fp16")];
130
+ tensor<fp16, [64, 8]> vad_encoder_encoder_2_se_fc2_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_se_fc2_weight_to_fp16"), val = tensor<fp16, [64, 8]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(318592)))];
131
+ tensor<fp16, [64]> vad_encoder_encoder_2_se_fc2_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_2_se_fc2_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(319680)))];
132
+ tensor<fp16, [1, 64]> linear_5_cast_fp16 = linear(bias = vad_encoder_encoder_2_se_fc2_bias_to_fp16, weight = vad_encoder_encoder_2_se_fc2_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("linear_5_cast_fp16")];
133
+ tensor<fp16, [1, 64]> y_9_cast_fp16 = sigmoid(x = linear_5_cast_fp16)[name = tensor<string, []>("y_9_cast_fp16")];
134
+ tensor<int32, [3]> var_160 = const()[name = tensor<string, []>("op_160"), val = tensor<int32, [3]>([1, 64, 1])];
135
+ tensor<fp16, [1, 64, 1]> y_11_cast_fp16 = reshape(shape = var_160, x = y_9_cast_fp16)[name = tensor<string, []>("y_11_cast_fp16")];
136
+ tensor<fp16, [1, 64, 3]> input_35_cast_fp16 = mul(x = x_5_cast_fp16, y = y_11_cast_fp16)[name = tensor<string, []>("input_35_cast_fp16")];
137
+ tensor<fp16, [1, 64, 3]> input_37_cast_fp16 = relu(x = input_35_cast_fp16)[name = tensor<string, []>("input_37_cast_fp16")];
138
+ tensor<string, []> x_7_pad_type_0 = const()[name = tensor<string, []>("x_7_pad_type_0"), val = tensor<string, []>("custom")];
139
+ tensor<int32, [2]> x_7_pad_0 = const()[name = tensor<string, []>("x_7_pad_0"), val = tensor<int32, [2]>([1, 1])];
140
+ tensor<int32, [1]> x_7_strides_0 = const()[name = tensor<string, []>("x_7_strides_0"), val = tensor<int32, [1]>([1])];
141
+ tensor<int32, [1]> x_7_dilations_0 = const()[name = tensor<string, []>("x_7_dilations_0"), val = tensor<int32, [1]>([1])];
142
+ tensor<int32, []> x_7_groups_0 = const()[name = tensor<string, []>("x_7_groups_0"), val = tensor<int32, []>(1)];
143
+ tensor<fp16, [128, 64, 3]> vad_encoder_encoder_3_conv_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_conv_weight_to_fp16"), val = tensor<fp16, [128, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(319872)))];
144
+ tensor<fp16, [128]> vad_encoder_encoder_3_conv_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_conv_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(369088)))];
145
+ tensor<fp16, [1, 128, 3]> x_7_cast_fp16 = conv(bias = vad_encoder_encoder_3_conv_bias_to_fp16, dilations = x_7_dilations_0, groups = x_7_groups_0, pad = x_7_pad_0, pad_type = x_7_pad_type_0, strides = x_7_strides_0, weight = vad_encoder_encoder_3_conv_weight_to_fp16, x = input_37_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
146
+ tensor<int32, [1]> reduce_mean_3_axes_0 = const()[name = tensor<string, []>("reduce_mean_3_axes_0"), val = tensor<int32, [1]>([-1])];
147
+ tensor<bool, []> reduce_mean_3_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_3_keep_dims_0"), val = tensor<bool, []>(true)];
148
+ tensor<fp16, [1, 128, 1]> reduce_mean_3_cast_fp16 = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = x_7_cast_fp16)[name = tensor<string, []>("reduce_mean_3_cast_fp16")];
149
+ tensor<int32, []> concat_3_axis_0 = const()[name = tensor<string, []>("concat_3_axis_0"), val = tensor<int32, []>(-1)];
150
+ tensor<bool, []> concat_3_interleave_0 = const()[name = tensor<string, []>("concat_3_interleave_0"), val = tensor<bool, []>(false)];
151
+ tensor<fp16, [1, 128, 1]> concat_3_cast_fp16 = concat(axis = concat_3_axis_0, interleave = concat_3_interleave_0, values = reduce_mean_3_cast_fp16)[name = tensor<string, []>("concat_3_cast_fp16")];
152
+ tensor<int32, [2]> var_179 = const()[name = tensor<string, []>("op_179"), val = tensor<int32, [2]>([1, 128])];
153
+ tensor<fp16, [1, 128]> input_39_cast_fp16 = reshape(shape = var_179, x = concat_3_cast_fp16)[name = tensor<string, []>("input_39_cast_fp16")];
154
+ tensor<fp16, [16, 128]> vad_encoder_encoder_3_se_fc1_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_se_fc1_weight_to_fp16"), val = tensor<fp16, [16, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(369408)))];
155
+ tensor<fp16, [16]> vad_encoder_encoder_3_se_fc1_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_se_fc1_bias_to_fp16"), val = tensor<fp16, [16]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(373568)))];
156
+ tensor<fp16, [1, 16]> linear_6_cast_fp16 = linear(bias = vad_encoder_encoder_3_se_fc1_bias_to_fp16, weight = vad_encoder_encoder_3_se_fc1_weight_to_fp16, x = input_39_cast_fp16)[name = tensor<string, []>("linear_6_cast_fp16")];
157
+ tensor<fp16, [1, 16]> input_43_cast_fp16 = relu(x = linear_6_cast_fp16)[name = tensor<string, []>("input_43_cast_fp16")];
158
+ tensor<fp16, [128, 16]> vad_encoder_encoder_3_se_fc2_weight_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_se_fc2_weight_to_fp16"), val = tensor<fp16, [128, 16]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(373696)))];
159
+ tensor<fp16, [128]> vad_encoder_encoder_3_se_fc2_bias_to_fp16 = const()[name = tensor<string, []>("vad_encoder_encoder_3_se_fc2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(377856)))];
160
+ tensor<fp16, [1, 128]> linear_7_cast_fp16 = linear(bias = vad_encoder_encoder_3_se_fc2_bias_to_fp16, weight = vad_encoder_encoder_3_se_fc2_weight_to_fp16, x = input_43_cast_fp16)[name = tensor<string, []>("linear_7_cast_fp16")];
161
+ tensor<fp16, [1, 128]> y_13_cast_fp16 = sigmoid(x = linear_7_cast_fp16)[name = tensor<string, []>("y_13_cast_fp16")];
162
+ tensor<int32, [3]> var_189 = const()[name = tensor<string, []>("op_189"), val = tensor<int32, [3]>([1, 128, 1])];
163
+ tensor<fp16, [1, 128, 1]> y_cast_fp16 = reshape(shape = var_189, x = y_13_cast_fp16)[name = tensor<string, []>("y_cast_fp16")];
164
+ tensor<fp16, [1, 128, 3]> input_47_cast_fp16 = mul(x = x_7_cast_fp16, y = y_cast_fp16)[name = tensor<string, []>("input_47_cast_fp16")];
165
+ tensor<fp16, [1, 128, 3]> x_9_cast_fp16 = relu(x = input_47_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
166
+ tensor<int32, [1]> x_11_axes_0 = const()[name = tensor<string, []>("x_11_axes_0"), val = tensor<int32, [1]>([2])];
167
+ tensor<bool, []> x_11_keep_dims_0 = const()[name = tensor<string, []>("x_11_keep_dims_0"), val = tensor<bool, []>(true)];
168
+ tensor<fp16, [1, 128, 1]> x_11_cast_fp16 = reduce_mean(axes = x_11_axes_0, keep_dims = x_11_keep_dims_0, x = x_9_cast_fp16)[name = tensor<string, []>("x_11_cast_fp16")];
169
+ tensor<int32, [3]> transpose_6_perm_0 = const()[name = tensor<string, []>("transpose_6_perm_0"), val = tensor<int32, [3]>([2, 0, 1])];
170
+ tensor<string, []> transpose_6_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_6_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
171
+ tensor<fp32, [512]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(378176)))];
172
+ tensor<fp32, [512, 128]> concat_5 = const()[name = tensor<string, []>("concat_5"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(380288)))];
173
+ tensor<fp32, [512, 128]> concat_6 = const()[name = tensor<string, []>("concat_6"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(642496)))];
174
+ tensor<fp32, [1, 128]> input_49_batch_first_lstm_h0_squeeze = const()[name = tensor<string, []>("input_49_batch_first_lstm_h0_squeeze"), val = tensor<fp32, [1, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(904704)))];
175
+ tensor<string, []> input_49_batch_first_direction_0 = const()[name = tensor<string, []>("input_49_batch_first_direction_0"), val = tensor<string, []>("forward")];
176
+ tensor<bool, []> input_49_batch_first_output_sequence_0 = const()[name = tensor<string, []>("input_49_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
177
+ tensor<string, []> input_49_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("input_49_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
178
+ tensor<string, []> input_49_batch_first_cell_activation_0 = const()[name = tensor<string, []>("input_49_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
179
+ tensor<string, []> input_49_batch_first_activation_0 = const()[name = tensor<string, []>("input_49_batch_first_activation_0"), val = tensor<string, []>("tanh")];
180
+ tensor<fp16, [1, 1, 128]> transpose_6_cast_fp16 = transpose(perm = transpose_6_perm_0, x = x_11_cast_fp16)[name = tensor<string, []>("transpose_9")];
181
+ tensor<fp32, [1, 1, 128]> transpose_6_cast_fp16_to_fp32 = cast(dtype = transpose_6_cast_fp16_to_fp32_dtype_0, x = transpose_6_cast_fp16)[name = tensor<string, []>("cast_10")];
182
+ tensor<fp32, [1, 1, 128]> input_49_batch_first_0, tensor<fp32, [1, 128]> input_49_batch_first_1, tensor<fp32, [1, 128]> input_49_batch_first_2 = lstm(activation = input_49_batch_first_activation_0, bias = concat_4, cell_activation = input_49_batch_first_cell_activation_0, direction = input_49_batch_first_direction_0, initial_c = input_49_batch_first_lstm_h0_squeeze, initial_h = input_49_batch_first_lstm_h0_squeeze, output_sequence = input_49_batch_first_output_sequence_0, recurrent_activation = input_49_batch_first_recurrent_activation_0, weight_hh = concat_6, weight_ih = concat_5, x = transpose_6_cast_fp16_to_fp32)[name = tensor<string, []>("input_49_batch_first")];
183
+ tensor<int32, [3]> input_49_perm_0 = const()[name = tensor<string, []>("input_49_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
184
+ tensor<string, []> input_49_batch_first_0_to_fp16_dtype_0 = const()[name = tensor<string, []>("input_49_batch_first_0_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
185
+ tensor<int32, [1]> var_216_axes_0 = const()[name = tensor<string, []>("op_216_axes_0"), val = tensor<int32, [1]>([-1])];
186
+ tensor<fp16, [128]> vad_decoder_layer_norm_weight_to_fp16 = const()[name = tensor<string, []>("vad_decoder_layer_norm_weight_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(905280)))];
187
+ tensor<fp16, [128]> vad_decoder_layer_norm_bias_to_fp16 = const()[name = tensor<string, []>("vad_decoder_layer_norm_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(905600)))];
188
+ tensor<fp16, []> var_5_to_fp16 = const()[name = tensor<string, []>("op_5_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
189
+ tensor<fp16, [1, 1, 128]> input_49_batch_first_0_to_fp16 = cast(dtype = input_49_batch_first_0_to_fp16_dtype_0, x = input_49_batch_first_0)[name = tensor<string, []>("cast_9")];
190
+ tensor<fp16, [1, 1, 128]> input_49_cast_fp16 = transpose(perm = input_49_perm_0, x = input_49_batch_first_0_to_fp16)[name = tensor<string, []>("transpose_8")];
191
+ tensor<fp16, [1, 1, 128]> var_216_cast_fp16 = layer_norm(axes = var_216_axes_0, beta = vad_decoder_layer_norm_bias_to_fp16, epsilon = var_5_to_fp16, gamma = vad_decoder_layer_norm_weight_to_fp16, x = input_49_cast_fp16)[name = tensor<string, []>("op_216_cast_fp16")];
192
+ tensor<fp16, []> var_217_to_fp16 = const()[name = tensor<string, []>("op_217_to_fp16"), val = tensor<fp16, []>(0x1.334p-3)];
193
+ tensor<fp16, [1, 1, 128]> x_cast_fp16 = mul(x = var_216_cast_fp16, y = var_217_to_fp16)[name = tensor<string, []>("x_cast_fp16")];
194
+ tensor<int32, [3]> input_51_perm_0 = const()[name = tensor<string, []>("input_51_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
195
+ tensor<fp16, [1, 128, 1]> input_51_cast_fp16 = transpose(perm = input_51_perm_0, x = x_cast_fp16)[name = tensor<string, []>("transpose_7")];
196
+ tensor<fp16, [1, 128, 1]> input_55_cast_fp16 = relu(x = input_51_cast_fp16)[name = tensor<string, []>("input_55_cast_fp16")];
197
+ tensor<string, []> input_pad_type_0 = const()[name = tensor<string, []>("input_pad_type_0"), val = tensor<string, []>("valid")];
198
+ tensor<int32, [1]> input_strides_0 = const()[name = tensor<string, []>("input_strides_0"), val = tensor<int32, [1]>([1])];
199
+ tensor<int32, [2]> input_pad_0 = const()[name = tensor<string, []>("input_pad_0"), val = tensor<int32, [2]>([0, 0])];
200
+ tensor<int32, [1]> input_dilations_0 = const()[name = tensor<string, []>("input_dilations_0"), val = tensor<int32, [1]>([1])];
201
+ tensor<int32, []> input_groups_0 = const()[name = tensor<string, []>("input_groups_0"), val = tensor<int32, []>(1)];
202
+ tensor<fp16, [1, 128, 1]> vad_decoder_conv_weight_to_fp16 = const()[name = tensor<string, []>("vad_decoder_conv_weight_to_fp16"), val = tensor<fp16, [1, 128, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(905920)))];
203
+ tensor<fp16, [1]> vad_decoder_conv_bias_to_fp16 = const()[name = tensor<string, []>("vad_decoder_conv_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.dfp-5])];
204
+ tensor<fp16, [1, 1, 1]> input_cast_fp16 = conv(bias = vad_decoder_conv_bias_to_fp16, dilations = input_dilations_0, groups = input_groups_0, pad = input_pad_0, pad_type = input_pad_type_0, strides = input_strides_0, weight = vad_decoder_conv_weight_to_fp16, x = input_55_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
205
+ tensor<fp16, [1, 1, 1]> var_229_cast_fp16 = sigmoid(x = input_cast_fp16)[name = tensor<string, []>("op_229_cast_fp16")];
206
+ tensor<int32, [1]> var_230_axes_0 = const()[name = tensor<string, []>("op_230_axes_0"), val = tensor<int32, [1]>([-1])];
207
+ tensor<fp16, [1, 1]> var_230_cast_fp16 = squeeze(axes = var_230_axes_0, x = var_229_cast_fp16)[name = tensor<string, []>("op_230_cast_fp16")];
208
+ tensor<string, []> var_230_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_230_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
209
+ tensor<fp32, [1, 1]> vad_probability = cast(dtype = var_230_cast_fp16_to_fp32_dtype_0, x = var_230_cast_fp16)[name = tensor<string, []>("cast_8")];
210
+ } -> (vad_probability);
211
+ }
silero_vad.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45846d0738d3bf5e4b6e9e7d2fddda7b1ad07da33d473f0405e51d3b6c4c11a9
3
+ size 906240