File size: 3,915 Bytes
419eab0 aecbefd 419eab0 aecbefd 419eab0 aecbefd e16912c aecbefd e16912c aecbefd e16912c aecbefd e16912c aecbefd e16912c d1abcbc e16912c aecbefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- multilingual
- ar
- zh
- cs
- da
- nl
- en
- fi
- fr
- de
- he
- hu
- it
- ja
- ko
- 'no'
- pl
- pt
- ru
- es
- sv
- th
- tr
- uk
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
base_model: microsoft/Phi-4-mini-instruct
base_model_relation: quantized
---
# Phi-4-mini-instruct-int4-ov
* Model creator: [Microsoft](https://huggingface.co/microsoft)
* Original model: [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct)
## Description
This is [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
With the following pyproject.yoml
```yaml
[project]
name = "export"
version = "0.1.0"
description = "Export models"
readme = "README.md"
requires-python = "==3.12.*"
dependencies = [
"openvino==2025.2.0",
"optimum[openvino]",
"optimum-intel",
"openvino-genai",
"huggingface-hub==0.33.0",
"tokenizers==0.21.1"
]
```
Then run the export
```bash
uv sync
uv run optimum-cli export openvino --model microsoft/phi-4-mini-instruct --task text-generation-with-past --weight-format int4 --group-size -1 --ratio 1.0 --sym --trust-remote-code phi-4-mini-instruct/INT4-NPU_compressed_weights
```
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.2.0 and higher
* Optimum Intel 1.23.0 and higher
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install -U openvino openvino-tokenizers openvino-genai
pip install huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "bweng/phi-4-mini-instruct-int4-ov-npu"
model_path = "phi-4-mini-instruct-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "NPU"
pipe = ov_genai.LLMPipeline(model_path, "NPU", MAX_PROMPT_LEN=4096, CACHE_DIR="./cache")
# Create a proper GenerationConfig object
gen_config = GenerationConfig(apply_chat_template=True, max_new_tokens=1024)
# Now call generate with the correct config object
output = pipe.generate("How are you doing?", generation_config=gen_config)
print(output)
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original model card for [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct) for limitations.
## Legal information
The original model is distributed under [mit](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE) license. More details can be found in [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |