bweng commited on
Commit
e5b593c
·
verified ·
1 Parent(s): 13e548a

Delete Melspectrogram_15s.mlmodelc

Browse files
Melspectrogram_15s.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7e04bea8a060c43abb74bb5ad40ce35bba4ebd074f7e3ad395ab5e252596067
3
- size 243
 
 
 
 
Melspectrogram_15s.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:987ee4c196af799a042b341950390bd6404e444c3dec16f0b31b639c0b286369
3
- size 400
 
 
 
 
Melspectrogram_15s.mlmodelc/metadata.json DELETED
@@ -1,107 +0,0 @@
1
- [
2
- {
3
- "metadataOutputVersion" : "3.0",
4
- "storagePrecision" : "Float16",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Float32",
10
- "formattedType" : "MultiArray (Float32)",
11
- "shortDescription" : "",
12
- "shape" : "[]",
13
- "name" : "melspectrogram",
14
- "type" : "MultiArray"
15
- },
16
- {
17
- "hasShapeFlexibility" : "0",
18
- "isOptional" : "0",
19
- "dataType" : "Int32",
20
- "formattedType" : "MultiArray (Int32 1)",
21
- "shortDescription" : "",
22
- "shape" : "[1]",
23
- "name" : "melspectrogram_length",
24
- "type" : "MultiArray"
25
- }
26
- ],
27
- "modelParameters" : [
28
-
29
- ],
30
- "specificationVersion" : 6,
31
- "mlProgramOperationTypeHistogram" : {
32
- "Range1d" : 2,
33
- "Gather" : 3,
34
- "Sub" : 4,
35
- "FloorDiv" : 1,
36
- "Identity" : 1,
37
- "Reshape" : 2,
38
- "Matmul" : 1,
39
- "Cast" : 5,
40
- "Select" : 3,
41
- "Concat" : 3,
42
- "Add" : 4,
43
- "Tile" : 2,
44
- "Less" : 1,
45
- "GreaterEqual" : 1,
46
- "Sqrt" : 1,
47
- "RealDiv" : 4,
48
- "Pow" : 2,
49
- "Shape" : 3,
50
- "Pad" : 1,
51
- "ExpandDims" : 10,
52
- "Conv" : 2,
53
- "Log" : 1,
54
- "SliceByIndex" : 3,
55
- "Stack" : 1,
56
- "ReduceSum" : 4,
57
- "Mul" : 1
58
- },
59
- "computePrecision" : "Mixed (Float16, Float32, Int32)",
60
- "isUpdatable" : "0",
61
- "stateSchema" : [
62
-
63
- ],
64
- "availability" : {
65
- "macOS" : "12.0",
66
- "tvOS" : "15.0",
67
- "visionOS" : "1.0",
68
- "watchOS" : "8.0",
69
- "iOS" : "15.0",
70
- "macCatalyst" : "15.0"
71
- },
72
- "modelType" : {
73
- "name" : "MLModelType_mlProgram"
74
- },
75
- "userDefinedMetadata" : {
76
- "com.github.apple.coremltools.source_dialect" : "TorchScript",
77
- "com.github.apple.coremltools.source" : "torch==2.5.0",
78
- "com.github.apple.coremltools.version" : "8.3.0"
79
- },
80
- "inputSchema" : [
81
- {
82
- "dataType" : "Float32",
83
- "hasShapeFlexibility" : "1",
84
- "isOptional" : "0",
85
- "shapeFlexibility" : "1 × 1...240000",
86
- "shapeRange" : "[[1, 1], [1, 240000]]",
87
- "formattedType" : "MultiArray (Float32 1 × 1)",
88
- "type" : "MultiArray",
89
- "shape" : "[1, 1]",
90
- "name" : "audio_signal",
91
- "shortDescription" : ""
92
- },
93
- {
94
- "hasShapeFlexibility" : "0",
95
- "isOptional" : "0",
96
- "dataType" : "Int32",
97
- "formattedType" : "MultiArray (Int32 1)",
98
- "shortDescription" : "",
99
- "shape" : "[1]",
100
- "name" : "audio_length",
101
- "type" : "MultiArray"
102
- }
103
- ],
104
- "generatedClassName" : "Melspectrogram",
105
- "method" : "predict"
106
- }
107
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Melspectrogram_15s.mlmodelc/model.mil DELETED
@@ -1,157 +0,0 @@
1
- program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
- {
4
- func main<ios15>(tensor<int32, [1]> audio_length, tensor<fp32, [1, ?]> audio_signal) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"audio_signal", [1, 1]}}), ("RangeDims", {{"audio_signal", [[1, 1], [1, 240000]]}})))] {
5
- tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(512)];
6
- tensor<int32, [1]> var_7 = add(x = audio_length, y = var_6)[name = tensor<string, []>("op_7")];
7
- tensor<int32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<int32, []>(512)];
8
- tensor<int32, [1]> var_10 = sub(x = var_7, y = var_9)[name = tensor<string, []>("op_10")];
9
- tensor<int32, []> var_11 = const()[name = tensor<string, []>("op_11"), val = tensor<int32, []>(160)];
10
- tensor<int32, [1]> floor_div_0 = floor_div(x = var_10, y = var_11)[name = tensor<string, []>("floor_div_0")];
11
- tensor<string, []> var_12_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_12_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
12
- tensor<fp16, []> var_14_promoted_to_fp16 = const()[name = tensor<string, []>("op_14_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
13
- tensor<fp16, [1]> floor_div_0_to_fp16 = cast(dtype = var_12_to_fp16_dtype_0, x = floor_div_0)[name = tensor<string, []>("cast_18")];
14
- tensor<fp16, [1]> seq_len_1_cast_fp16 = add(x = floor_div_0_to_fp16, y = var_14_promoted_to_fp16)[name = tensor<string, []>("seq_len_1_cast_fp16")];
15
- tensor<string, []> cast_0_dtype_0 = const()[name = tensor<string, []>("cast_0_dtype_0"), val = tensor<string, []>("int32")];
16
- tensor<int32, [2]> var_28_begin_0 = const()[name = tensor<string, []>("op_28_begin_0"), val = tensor<int32, [2]>([0, 0])];
17
- tensor<int32, [2]> var_28_end_0 = const()[name = tensor<string, []>("op_28_end_0"), val = tensor<int32, [2]>([1, 1])];
18
- tensor<bool, [2]> var_28_end_mask_0 = const()[name = tensor<string, []>("op_28_end_mask_0"), val = tensor<bool, [2]>([true, false])];
19
- tensor<bool, [2]> var_28_squeeze_mask_0 = const()[name = tensor<string, []>("op_28_squeeze_mask_0"), val = tensor<bool, [2]>([false, true])];
20
- tensor<string, []> audio_signal_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_signal_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
21
- tensor<fp16, [1, ?]> audio_signal_to_fp16 = cast(dtype = audio_signal_to_fp16_dtype_0, x = audio_signal)[name = tensor<string, []>("cast_16")];
22
- tensor<fp16, [1]> var_28_cast_fp16 = slice_by_index(begin = var_28_begin_0, end = var_28_end_0, end_mask = var_28_end_mask_0, squeeze_mask = var_28_squeeze_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
23
- tensor<int32, [1]> var_30_axes_0 = const()[name = tensor<string, []>("op_30_axes_0"), val = tensor<int32, [1]>([1])];
24
- tensor<fp16, [1, 1]> var_30_cast_fp16 = expand_dims(axes = var_30_axes_0, x = var_28_cast_fp16)[name = tensor<string, []>("op_30_cast_fp16")];
25
- tensor<int32, [2]> var_40_begin_0 = const()[name = tensor<string, []>("op_40_begin_0"), val = tensor<int32, [2]>([0, 1])];
26
- tensor<int32, [2]> var_40_end_0 = const()[name = tensor<string, []>("op_40_end_0"), val = tensor<int32, [2]>([1, 0])];
27
- tensor<bool, [2]> var_40_end_mask_0 = const()[name = tensor<string, []>("op_40_end_mask_0"), val = tensor<bool, [2]>([true, true])];
28
- tensor<fp16, [1, ?]> var_40_cast_fp16 = slice_by_index(begin = var_40_begin_0, end = var_40_end_0, end_mask = var_40_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_40_cast_fp16")];
29
- tensor<int32, [2]> var_50_begin_0 = const()[name = tensor<string, []>("op_50_begin_0"), val = tensor<int32, [2]>([0, 0])];
30
- tensor<int32, [2]> var_50_end_0 = const()[name = tensor<string, []>("op_50_end_0"), val = tensor<int32, [2]>([1, -1])];
31
- tensor<bool, [2]> var_50_end_mask_0 = const()[name = tensor<string, []>("op_50_end_mask_0"), val = tensor<bool, [2]>([true, false])];
32
- tensor<fp16, [1, ?]> var_50_cast_fp16 = slice_by_index(begin = var_50_begin_0, end = var_50_end_0, end_mask = var_50_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_50_cast_fp16")];
33
- tensor<fp16, []> var_51_to_fp16 = const()[name = tensor<string, []>("op_51_to_fp16"), val = tensor<fp16, []>(0x1.f0cp-1)];
34
- tensor<fp16, [1, ?]> var_52_cast_fp16 = mul(x = var_50_cast_fp16, y = var_51_to_fp16)[name = tensor<string, []>("op_52_cast_fp16")];
35
- tensor<fp16, [1, ?]> var_54_cast_fp16 = sub(x = var_40_cast_fp16, y = var_52_cast_fp16)[name = tensor<string, []>("op_54_cast_fp16")];
36
- tensor<int32, []> var_56 = const()[name = tensor<string, []>("op_56"), val = tensor<int32, []>(1)];
37
- tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
38
- tensor<fp16, [1, ?]> input_1_cast_fp16 = concat(axis = var_56, interleave = input_1_interleave_0, values = (var_30_cast_fp16, var_54_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
39
- tensor<int32, [3]> concat_0x = const()[name = tensor<string, []>("concat_0x"), val = tensor<int32, [3]>([1, 1, -1])];
40
- tensor<fp16, [1, 1, ?]> input_3_cast_fp16 = reshape(shape = concat_0x, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
41
- tensor<int32, [6]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
42
- tensor<string, []> input_5_mode_0 = const()[name = tensor<string, []>("input_5_mode_0"), val = tensor<string, []>("reflect")];
43
- tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
44
- tensor<fp16, [1, 1, ?]> input_5_cast_fp16 = pad(constant_val = const_0_to_fp16, mode = input_5_mode_0, pad = input_5_pad_0, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
45
- tensor<int32, [2]> concat_1x = const()[name = tensor<string, []>("concat_1x"), val = tensor<int32, [2]>([1, -1])];
46
- tensor<fp16, [1, ?]> input_cast_fp16 = reshape(shape = concat_1x, x = input_5_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
47
- tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
48
- tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
49
- tensor<fp16, [1, 1, ?]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
50
- tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
51
- tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
52
- tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
53
- tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
54
- tensor<fp16, [257, 1, 512]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
55
- tensor<fp16, [1, 257, ?]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
56
- tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
57
- tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
58
- tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
59
- tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
60
- tensor<fp16, [257, 1, 512]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(263296)))];
61
- tensor<fp16, [1, 257, ?]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
62
- tensor<int32, []> stack_0_axis_0 = const()[name = tensor<string, []>("stack_0_axis_0"), val = tensor<int32, []>(-1)];
63
- tensor<fp16, [1, 257, ?, 2]> stack_0_cast_fp16 = stack(axis = stack_0_axis_0, values = (conv_0_cast_fp16, conv_1_cast_fp16))[name = tensor<string, []>("stack_0_cast_fp16")];
64
- tensor<fp16, []> var_93_promoted_to_fp16 = const()[name = tensor<string, []>("op_93_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
65
- tensor<fp16, [1, 257, ?, 2]> var_94_cast_fp16 = pow(x = stack_0_cast_fp16, y = var_93_promoted_to_fp16)[name = tensor<string, []>("op_94_cast_fp16")];
66
- tensor<int32, [1]> var_99_axes_0 = const()[name = tensor<string, []>("op_99_axes_0"), val = tensor<int32, [1]>([-1])];
67
- tensor<bool, []> var_99_keep_dims_0 = const()[name = tensor<string, []>("op_99_keep_dims_0"), val = tensor<bool, []>(false)];
68
- tensor<fp16, [1, 257, ?]> var_99_cast_fp16 = reduce_sum(axes = var_99_axes_0, keep_dims = var_99_keep_dims_0, x = var_94_cast_fp16)[name = tensor<string, []>("op_99_cast_fp16")];
69
- tensor<fp16, [1, 257, ?]> x_7_cast_fp16 = identity(x = var_99_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
70
- tensor<bool, []> x_9_transpose_x_0 = const()[name = tensor<string, []>("x_9_transpose_x_0"), val = tensor<bool, []>(false)];
71
- tensor<bool, []> x_9_transpose_y_0 = const()[name = tensor<string, []>("x_9_transpose_y_0"), val = tensor<bool, []>(false)];
72
- tensor<fp16, [1, 128, 257]> filterbanks_to_fp16 = const()[name = tensor<string, []>("filterbanks_to_fp16"), val = tensor<fp16, [1, 128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(526528)))];
73
- tensor<fp16, [1, 128, ?]> x_9_cast_fp16 = matmul(transpose_x = x_9_transpose_x_0, transpose_y = x_9_transpose_y_0, x = filterbanks_to_fp16, y = x_7_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
74
- tensor<fp16, []> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
75
- tensor<fp16, [1, 128, ?]> var_109_cast_fp16 = add(x = x_9_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("op_109_cast_fp16")];
76
- tensor<fp16, []> x_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("x_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
77
- tensor<fp16, [1, 128, ?]> x_11_cast_fp16 = log(epsilon = x_11_epsilon_0_to_fp16, x = var_109_cast_fp16)[name = tensor<string, []>("x_11_cast_fp16")];
78
- tensor<int32, []> var_114 = const()[name = tensor<string, []>("op_114"), val = tensor<int32, []>(1)];
79
- tensor<int32, [3]> var_116_shape_cast_fp16 = shape(x = x_11_cast_fp16)[name = tensor<string, []>("op_116_shape_cast_fp16")];
80
- tensor<int32, []> gather_5_indices_0 = const()[name = tensor<string, []>("gather_5_indices_0"), val = tensor<int32, []>(2)];
81
- tensor<int32, []> gather_5_axis_0 = const()[name = tensor<string, []>("gather_5_axis_0"), val = tensor<int32, []>(0)];
82
- tensor<int32, []> gather_5 = gather(axis = gather_5_axis_0, indices = gather_5_indices_0, x = var_116_shape_cast_fp16)[name = tensor<string, []>("gather_5")];
83
- tensor<int32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<int32, []>(0)];
84
- tensor<int32, []> const_2 = const()[name = tensor<string, []>("const_2"), val = tensor<int32, []>(1)];
85
- tensor<int32, [?]> var_124 = range_1d(end = gather_5, start = const_1, step = const_2)[name = tensor<string, []>("op_124")];
86
- tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([0])];
87
- tensor<int32, [1, ?]> var_126 = expand_dims(axes = var_126_axes_0, x = var_124)[name = tensor<string, []>("op_126")];
88
- tensor<int32, []> concat_2_axis_0 = const()[name = tensor<string, []>("concat_2_axis_0"), val = tensor<int32, []>(0)];
89
- tensor<bool, []> concat_2_interleave_0 = const()[name = tensor<string, []>("concat_2_interleave_0"), val = tensor<bool, []>(false)];
90
- tensor<int32, [2]> concat_2 = concat(axis = concat_2_axis_0, interleave = concat_2_interleave_0, values = (var_114, gather_5))[name = tensor<string, []>("concat_2")];
91
- tensor<int32, [2]> shape_0 = shape(x = var_126)[name = tensor<string, []>("shape_0")];
92
- tensor<int32, [2]> real_div_0 = real_div(x = concat_2, y = shape_0)[name = tensor<string, []>("real_div_0")];
93
- tensor<int32, [?, ?]> time_steps = tile(reps = real_div_0, x = var_126)[name = tensor<string, []>("time_steps")];
94
- tensor<int32, [1]> var_131_axes_0 = const()[name = tensor<string, []>("op_131_axes_0"), val = tensor<int32, [1]>([1])];
95
- tensor<int32, [1]> melspectrogram_length = cast(dtype = cast_0_dtype_0, x = seq_len_1_cast_fp16)[name = tensor<string, []>("cast_17")];
96
- tensor<int32, [1, 1]> var_131 = expand_dims(axes = var_131_axes_0, x = melspectrogram_length)[name = tensor<string, []>("op_131")];
97
- tensor<bool, [?, ?]> valid_mask = less(x = time_steps, y = var_131)[name = tensor<string, []>("valid_mask")];
98
- tensor<int32, [1]> var_134_axes_0 = const()[name = tensor<string, []>("op_134_axes_0"), val = tensor<int32, [1]>([1])];
99
- tensor<bool, [?, 1, ?]> var_134 = expand_dims(axes = var_134_axes_0, x = valid_mask)[name = tensor<string, []>("op_134")];
100
- tensor<fp16, []> var_135_to_fp16 = const()[name = tensor<string, []>("op_135_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
101
- tensor<fp16, [1, 128, ?]> var_136_cast_fp16 = select(a = x_11_cast_fp16, b = var_135_to_fp16, cond = var_134)[name = tensor<string, []>("op_136_cast_fp16")];
102
- tensor<int32, [1]> x_mean_numerator_axes_0 = const()[name = tensor<string, []>("x_mean_numerator_axes_0"), val = tensor<int32, [1]>([2])];
103
- tensor<bool, []> x_mean_numerator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_numerator_keep_dims_0"), val = tensor<bool, []>(false)];
104
- tensor<fp16, [1, 128]> x_mean_numerator_cast_fp16 = reduce_sum(axes = x_mean_numerator_axes_0, keep_dims = x_mean_numerator_keep_dims_0, x = var_136_cast_fp16)[name = tensor<string, []>("x_mean_numerator_cast_fp16")];
105
- tensor<int32, [1]> x_mean_denominator_axes_0 = const()[name = tensor<string, []>("x_mean_denominator_axes_0"), val = tensor<int32, [1]>([1])];
106
- tensor<bool, []> x_mean_denominator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_denominator_keep_dims_0"), val = tensor<bool, []>(false)];
107
- tensor<string, []> cast_4_to_fp16_dtype_0 = const()[name = tensor<string, []>("cast_4_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
108
- tensor<fp16, [?, ?]> valid_mask_to_fp16 = cast(dtype = cast_4_to_fp16_dtype_0, x = valid_mask)[name = tensor<string, []>("cast_15")];
109
- tensor<fp16, [?]> x_mean_denominator_cast_fp16 = reduce_sum(axes = x_mean_denominator_axes_0, keep_dims = x_mean_denominator_keep_dims_0, x = valid_mask_to_fp16)[name = tensor<string, []>("x_mean_denominator_cast_fp16")];
110
- tensor<int32, [1]> var_148_axes_0 = const()[name = tensor<string, []>("op_148_axes_0"), val = tensor<int32, [1]>([1])];
111
- tensor<fp16, [?, 1]> var_148_cast_fp16 = expand_dims(axes = var_148_axes_0, x = x_mean_denominator_cast_fp16)[name = tensor<string, []>("op_148_cast_fp16")];
112
- tensor<fp16, [?, 128]> x_mean_cast_fp16 = real_div(x = x_mean_numerator_cast_fp16, y = var_148_cast_fp16)[name = tensor<string, []>("x_mean_cast_fp16")];
113
- tensor<int32, [1]> var_153_axes_0 = const()[name = tensor<string, []>("op_153_axes_0"), val = tensor<int32, [1]>([2])];
114
- tensor<fp16, [?, 128, 1]> var_153_cast_fp16 = expand_dims(axes = var_153_axes_0, x = x_mean_cast_fp16)[name = tensor<string, []>("op_153_cast_fp16")];
115
- tensor<fp16, [?, 128, ?]> var_155_cast_fp16 = sub(x = x_11_cast_fp16, y = var_153_cast_fp16)[name = tensor<string, []>("op_155_cast_fp16")];
116
- tensor<fp16, []> var_156_to_fp16 = const()[name = tensor<string, []>("op_156_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
117
- tensor<fp16, [?, 128, ?]> var_157_cast_fp16 = select(a = var_155_cast_fp16, b = var_156_to_fp16, cond = var_134)[name = tensor<string, []>("op_157_cast_fp16")];
118
- tensor<fp16, []> var_158_promoted_to_fp16 = const()[name = tensor<string, []>("op_158_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
119
- tensor<fp16, [?, 128, ?]> var_159_cast_fp16 = pow(x = var_157_cast_fp16, y = var_158_promoted_to_fp16)[name = tensor<string, []>("op_159_cast_fp16")];
120
- tensor<int32, [1]> var_164_axes_0 = const()[name = tensor<string, []>("op_164_axes_0"), val = tensor<int32, [1]>([2])];
121
- tensor<bool, []> var_164_keep_dims_0 = const()[name = tensor<string, []>("op_164_keep_dims_0"), val = tensor<bool, []>(false)];
122
- tensor<fp16, [?, 128]> var_164_cast_fp16 = reduce_sum(axes = var_164_axes_0, keep_dims = var_164_keep_dims_0, x = var_159_cast_fp16)[name = tensor<string, []>("op_164_cast_fp16")];
123
- tensor<fp16, []> var_168_to_fp16 = const()[name = tensor<string, []>("op_168_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
124
- tensor<fp16, [?, 1]> var_169_cast_fp16 = sub(x = var_148_cast_fp16, y = var_168_to_fp16)[name = tensor<string, []>("op_169_cast_fp16")];
125
- tensor<fp16, [?, 128]> var_170_cast_fp16 = real_div(x = var_164_cast_fp16, y = var_169_cast_fp16)[name = tensor<string, []>("op_170_cast_fp16")];
126
- tensor<fp16, [?, 128]> x_std_1_cast_fp16 = sqrt(x = var_170_cast_fp16)[name = tensor<string, []>("x_std_1_cast_fp16")];
127
- tensor<fp16, []> var_172_to_fp16 = const()[name = tensor<string, []>("op_172_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
128
- tensor<fp16, [?, 128]> x_std_cast_fp16 = add(x = x_std_1_cast_fp16, y = var_172_to_fp16)[name = tensor<string, []>("x_std_cast_fp16")];
129
- tensor<int32, [1]> var_180_axes_0 = const()[name = tensor<string, []>("op_180_axes_0"), val = tensor<int32, [1]>([2])];
130
- tensor<fp16, [?, 128, 1]> var_180_cast_fp16 = expand_dims(axes = var_180_axes_0, x = x_std_cast_fp16)[name = tensor<string, []>("op_180_cast_fp16")];
131
- tensor<fp16, [?, 128, ?]> x_cast_fp16 = real_div(x = var_155_cast_fp16, y = var_180_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
132
- tensor<int32, [3]> var_183_shape_cast_fp16 = shape(x = x_cast_fp16)[name = tensor<string, []>("op_183_shape_cast_fp16")];
133
- tensor<int32, []> gather_6_indices_0 = const()[name = tensor<string, []>("gather_6_indices_0"), val = tensor<int32, []>(-1)];
134
- tensor<int32, []> gather_6_axis_0 = const()[name = tensor<string, []>("gather_6_axis_0"), val = tensor<int32, []>(0)];
135
- tensor<int32, []> gather_6 = gather(axis = gather_6_axis_0, indices = gather_6_indices_0, x = var_183_shape_cast_fp16)[name = tensor<string, []>("gather_6")];
136
- tensor<int32, []> const_3 = const()[name = tensor<string, []>("const_3"), val = tensor<int32, []>(0)];
137
- tensor<int32, []> const_4 = const()[name = tensor<string, []>("const_4"), val = tensor<int32, []>(1)];
138
- tensor<int32, [?]> padding_mask_1 = range_1d(end = gather_6, start = const_3, step = const_4)[name = tensor<string, []>("padding_mask_1")];
139
- tensor<int32, []> gather_7_indices_0 = const()[name = tensor<string, []>("gather_7_indices_0"), val = tensor<int32, []>(0)];
140
- tensor<int32, []> gather_7_axis_0 = const()[name = tensor<string, []>("gather_7_axis_0"), val = tensor<int32, []>(0)];
141
- tensor<int32, []> gather_7 = gather(axis = gather_7_axis_0, indices = gather_7_indices_0, x = var_183_shape_cast_fp16)[name = tensor<string, []>("gather_7")];
142
- tensor<int32, []> var_195 = const()[name = tensor<string, []>("op_195"), val = tensor<int32, []>(1)];
143
- tensor<int32, []> concat_3_axis_0 = const()[name = tensor<string, []>("concat_3_axis_0"), val = tensor<int32, []>(0)];
144
- tensor<bool, []> concat_3_interleave_0 = const()[name = tensor<string, []>("concat_3_interleave_0"), val = tensor<bool, []>(false)];
145
- tensor<int32, [2]> concat_3 = concat(axis = concat_3_axis_0, interleave = concat_3_interleave_0, values = (gather_7, var_195))[name = tensor<string, []>("concat_3")];
146
- tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
147
- tensor<int32, [1, ?]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x = padding_mask_1)[name = tensor<string, []>("expand_dims_0")];
148
- tensor<int32, [?, ?]> var_197 = tile(reps = concat_3, x = expand_dims_0)[name = tensor<string, []>("op_197")];
149
- tensor<bool, [?, ?]> padding_mask = greater_equal(x = var_197, y = var_131)[name = tensor<string, []>("padding_mask")];
150
- tensor<int32, [1]> var_202_axes_0 = const()[name = tensor<string, []>("op_202_axes_0"), val = tensor<int32, [1]>([1])];
151
- tensor<bool, [?, 1, ?]> var_202 = expand_dims(axes = var_202_axes_0, x = padding_mask)[name = tensor<string, []>("op_202")];
152
- tensor<fp16, []> var_216_to_fp16 = const()[name = tensor<string, []>("op_216_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
153
- tensor<fp16, [?, 128, ?]> var_217_cast_fp16 = select(a = var_216_to_fp16, b = x_cast_fp16, cond = var_202)[name = tensor<string, []>("op_217_cast_fp16")];
154
- tensor<string, []> var_217_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_217_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
155
- tensor<fp32, [?, 128, ?]> melspectrogram = cast(dtype = var_217_cast_fp16_to_fp32_dtype_0, x = var_217_cast_fp16)[name = tensor<string, []>("cast_14")];
156
- } -> (melspectrogram, melspectrogram_length);
157
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Melspectrogram_15s.mlmodelc/weights/weight.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:023c2303b7c3a1fafed92fc6ec46c1d43a48c0bbcdf33d6441d383a61747734c
3
- size 592384