Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Introduction
|
| 2 |
|
| 3 |
-
MiniCPM_o_2.6-FlagOS-NVIDIA provides an all-in-one deployment solution, enabling execution of MiniCPM_o_2.6 on NVIDIA GPUs. As the first-generation release for the NVIDIA-H100, this package delivers
|
| 4 |
|
| 5 |
1. Comprehensive Integration:
|
| 6 |
- Integrated with FlagScale (https://github.com/FlagOpen/FlagScale).
|
|
@@ -29,13 +29,7 @@ We use a variety of Triton-implemented operation kernels—approximately 70%—t
|
|
| 29 |
|
| 30 |
- Most Triton kernels are provided by FlagGems (https://github.com/FlagOpen/FlagGems). You can enable FlagGems kernels by setting the environment variable USE_FLAGGEMS. For more details, please refer to the "How to Run Locally" section.
|
| 31 |
|
| 32 |
-
- Also included are Triton kernels from vLLM.
|
| 33 |
-
|
| 34 |
-
# Bundle Download
|
| 35 |
-
|
| 36 |
-
| | Usage | Nvidia |
|
| 37 |
-
| ----------- | ------------------------------------------------------ | ------------------------------------------------------------ |
|
| 38 |
-
| Basic Image | basic software environment that supports model running | 'docker pull flagrelease-registry.cn-beijing.cr.aliyuncs.com/flagrelease/flagrelease:deepseek-flagos-nvidia |
|
| 39 |
|
| 40 |
# Evaluation Results
|
| 41 |
|
|
@@ -58,96 +52,65 @@ We use a variety of Triton-implemented operation kernels—approximately 70%—t
|
|
| 58 |
|
| 59 |
## 📌 Getting Started
|
| 60 |
|
| 61 |
-
###
|
| 62 |
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
### Download the FlagOS image
|
| 69 |
-
|
| 70 |
-
```
|
| 71 |
-
docker pull <IMAGE>
|
| 72 |
-
```
|
| 73 |
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
docker run -itd --name flagrelease_nv --privileged --gpus all --net=host --ipc=host --device=/dev/infiniband --shm-size 512g --ulimit memlock=-1 -v <CKPT_PATH>:<CKPT_PATH> flagrelease-registry.cn-beijing.cr.aliyuncs.com/flagrelease/flagrelease:deepseek-flagos-nvidia /bin/bash
|
| 78 |
|
|
|
|
|
|
|
| 79 |
docker exec -it flagrelease_nv /bin/bash
|
| 80 |
|
| 81 |
conda activate flagscale-inference
|
| 82 |
```
|
| 83 |
|
|
|
|
| 84 |
### Download and install FlagGems
|
| 85 |
|
| 86 |
-
```
|
| 87 |
git clone https://github.com/FlagOpen/FlagGems.git
|
| 88 |
cd FlagGems
|
| 89 |
-
pip install
|
| 90 |
cd ../
|
| 91 |
```
|
| 92 |
|
| 93 |
-
###
|
| 94 |
|
| 95 |
-
```
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
exp_name: minicpm_o_2.6
|
| 103 |
-
exp_dir: outputs/${experiment.exp_name}
|
| 104 |
-
task:
|
| 105 |
-
type: serve
|
| 106 |
-
deploy:
|
| 107 |
-
use_fs_serve: false
|
| 108 |
-
runner:
|
| 109 |
-
ssh_port: 22
|
| 110 |
-
envs:
|
| 111 |
-
CUDA_DEVICE_MAX_CONNECTIONS: 1
|
| 112 |
-
cmds:
|
| 113 |
-
before_start: source /root/miniconda3/bin/activate flagscale-inference && export USE_FLAGGEMS=1
|
| 114 |
-
action: run
|
| 115 |
-
hydra:
|
| 116 |
-
run:
|
| 117 |
-
dir: ${experiment.exp_dir}/hydra
|
| 118 |
```
|
| 119 |
|
| 120 |
-
|
| 121 |
-
cd FlagScale/examples/minicpm_o_2.6/conf/serve
|
| 122 |
-
# Modify the configuration in minicpm_o_2.6.yaml
|
| 123 |
-
- serve_id: vllm_model
|
| 124 |
-
engine: vllm
|
| 125 |
-
engine_args:
|
| 126 |
-
model: /models/MiniCPM_o_2 # path of weight of DeepSeek-R1-Distill-Qwen-32B
|
| 127 |
-
served_model_name: minicpmo26-flagos
|
| 128 |
-
tensor_parallel_size: 1
|
| 129 |
-
pipeline_parallel_size: 1
|
| 130 |
-
gpu_memory_utilization: 0.9
|
| 131 |
-
max_num_seqs: 256
|
| 132 |
-
limit_mm_per_prompt: image=18
|
| 133 |
-
port: 9010
|
| 134 |
-
trust_remote_code: true
|
| 135 |
-
enable_chunked_prefill: true
|
| 136 |
|
| 137 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
```
|
| 140 |
# install flagscale
|
| 141 |
-
cd FlagScale/
|
| 142 |
pip install .
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
### Serve
|
| 148 |
-
|
| 149 |
-
```
|
| 150 |
-
flagscale serve <Model>
|
| 151 |
```
|
| 152 |
|
| 153 |
# Contributing
|
|
@@ -169,4 +132,4 @@ send "FlagRelease"
|
|
| 169 |
|
| 170 |
# License
|
| 171 |
|
| 172 |
-
|
|
|
|
| 1 |
# Introduction
|
| 2 |
|
| 3 |
+
MiniCPM_o_2.6-FlagOS-NVIDIA provides an all-in-one deployment solution, enabling execution of MiniCPM_o_2.6 on NVIDIA GPUs. As the first-generation release for the NVIDIA-H100, this package delivers three key features:
|
| 4 |
|
| 5 |
1. Comprehensive Integration:
|
| 6 |
- Integrated with FlagScale (https://github.com/FlagOpen/FlagScale).
|
|
|
|
| 29 |
|
| 30 |
- Most Triton kernels are provided by FlagGems (https://github.com/FlagOpen/FlagGems). You can enable FlagGems kernels by setting the environment variable USE_FLAGGEMS. For more details, please refer to the "How to Run Locally" section.
|
| 31 |
|
| 32 |
+
- Also included are Triton kernels from vLLM, including fused MoE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Evaluation Results
|
| 35 |
|
|
|
|
| 52 |
|
| 53 |
## 📌 Getting Started
|
| 54 |
|
| 55 |
+
### Environment Setup
|
| 56 |
|
| 57 |
+
```bash
|
| 58 |
+
# install FlagScale
|
| 59 |
+
git clone https://github.com/FlagOpen/FlagScale.git
|
| 60 |
+
cd FlagScale
|
| 61 |
+
pip install .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# download image and ckpt
|
| 64 |
+
flagscale pull --image docker pull flagrelease-registry.cn-beijing.cr.aliyuncs.com/flagrelease/flagrelease:deepseek-flagos-nvidia --ckpt https://www.modelscope.cn/models/FlagRelease/MiniCPM_o_2.6-FlagOS-Nvidia.git --ckpt-path /nfs/MiniCPM_o_2.6
|
| 65 |
|
| 66 |
+
# Note: For security reasons, this image does not have passwordless configuration. In multi-machine scenarios, you need to configure passwordless access for the image yourself.
|
|
|
|
| 67 |
|
| 68 |
+
# build and enter the container
|
| 69 |
+
docker run -itd --name flagrelease_nv --privileged --gpus all --net=host --ipc=host --device=/dev/infiniband --shm-size 512g --ulimit memlock=-1 -v /nfs:/nfs flagrelease-registry.cn-beijing.cr.aliyuncs.com/flagrelease/flagrelease:deepseek-flagos-nvidia /bin/bash
|
| 70 |
docker exec -it flagrelease_nv /bin/bash
|
| 71 |
|
| 72 |
conda activate flagscale-inference
|
| 73 |
```
|
| 74 |
|
| 75 |
+
|
| 76 |
### Download and install FlagGems
|
| 77 |
|
| 78 |
+
```bash
|
| 79 |
git clone https://github.com/FlagOpen/FlagGems.git
|
| 80 |
cd FlagGems
|
| 81 |
+
pip install ./ --no-deps
|
| 82 |
cd ../
|
| 83 |
```
|
| 84 |
|
| 85 |
+
### Download FlagScale and build vllm
|
| 86 |
|
| 87 |
+
```bash
|
| 88 |
+
git clone https://github.com/FlagOpen/FlagScale.git
|
| 89 |
+
cd FlagScale/
|
| 90 |
+
git checkout ae85925798358d95050773dfa66680efdb0c2b28
|
| 91 |
+
cd vllm
|
| 92 |
+
pip install .
|
| 93 |
+
cd ../
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
```
|
| 95 |
|
| 96 |
+
### Serve
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
```bash
|
| 99 |
+
# config the minicpm_o_2.6 yaml
|
| 100 |
+
|
| 101 |
+
FlagScale/
|
| 102 |
+
├── examples/
|
| 103 |
+
│ └── minicpm_o_2.6/
|
| 104 |
+
│ └── conf/
|
| 105 |
+
│ └── config_minicpm_o_2.6.yaml # set hostfile and ssh_port(optional), if it is passwordless access between containers, the docker field needs to be removed
|
| 106 |
+
│ └── serve/
|
| 107 |
+
│ └── minicpm_o_2.6.yaml # set model parameters and server port
|
| 108 |
|
|
|
|
| 109 |
# install flagscale
|
|
|
|
| 110 |
pip install .
|
| 111 |
|
| 112 |
+
# serve
|
| 113 |
+
flagscale serve minicpm_o_2.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
```
|
| 115 |
|
| 116 |
# Contributing
|
|
|
|
| 132 |
|
| 133 |
# License
|
| 134 |
|
| 135 |
+
The weights of this model are based on OpenBMB/MiniCPM-o-2_6 and are open-sourced under the Apache 2.0 License: https://www.apache.org/licenses/LICENSE-2.0.txt.
|