Upload 7 files
Browse files- README.md +57 -3
- config.json +51 -0
- onnx/model.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- preprocessor_config.json +13 -0
- quantize_config.json +26 -0
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: hustvl/yolos-tiny
|
3 |
+
library_name: transformers.js
|
4 |
+
---
|
5 |
+
https://huggingface.co/hustvl/yolos-tiny with ONNX weights to be compatible with Transformers.js.
|
6 |
+
|
7 |
+
## Usage (Transformers.js)
|
8 |
+
|
9 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
10 |
+
```bash
|
11 |
+
npm i @huggingface/transformers
|
12 |
+
```
|
13 |
+
|
14 |
+
**Example:** Perform object detection with `Xenova/yolos-tiny`.
|
15 |
+
|
16 |
+
```js
|
17 |
+
import { pipeline } from "@huggingface/transformers";
|
18 |
+
const detector = await pipeline("object-detection", "Xenova/yolos-tiny");
|
19 |
+
const image = "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg";
|
20 |
+
const output = await detector(image, { threshold: 0.9 });
|
21 |
+
console.log(output);
|
22 |
+
```
|
23 |
+
|
24 |
+
<details>
|
25 |
+
|
26 |
+
<summary>Example output</summary>
|
27 |
+
|
28 |
+
```
|
29 |
+
[
|
30 |
+
{
|
31 |
+
score: 0.9921281933784485,
|
32 |
+
label: "remote",
|
33 |
+
box: { xmin: 32, ymin: 78, xmax: 185, ymax: 117 },
|
34 |
+
},
|
35 |
+
{
|
36 |
+
score: 0.9884883165359497,
|
37 |
+
label: "remote",
|
38 |
+
box: { xmin: 324, ymin: 82, xmax: 376, ymax: 191 },
|
39 |
+
},
|
40 |
+
{
|
41 |
+
score: 0.9197800159454346,
|
42 |
+
label: "cat",
|
43 |
+
box: { xmin: 5, ymin: 56, xmax: 321, ymax: 469 },
|
44 |
+
},
|
45 |
+
{
|
46 |
+
score: 0.9300552606582642,
|
47 |
+
label: "cat",
|
48 |
+
box: { xmin: 332, ymin: 25, xmax: 638, ymax: 369 },
|
49 |
+
},
|
50 |
+
]
|
51 |
+
```
|
52 |
+
|
53 |
+
</details>
|
54 |
+
|
55 |
+
---
|
56 |
+
|
57 |
+
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "CristianR8/Cacao-detection",
|
3 |
+
"architectures": [
|
4 |
+
"YolosForObjectDetection"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auxiliary_loss": false,
|
8 |
+
"bbox_cost": 5,
|
9 |
+
"bbox_loss_coefficient": 5,
|
10 |
+
"class_cost": 1,
|
11 |
+
"eos_coefficient": 0.1,
|
12 |
+
"giou_cost": 2,
|
13 |
+
"giou_loss_coefficient": 2,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.0,
|
16 |
+
"hidden_size": 192,
|
17 |
+
"id2label": {
|
18 |
+
"0": "fermentado",
|
19 |
+
"1": "insufi_fermen",
|
20 |
+
"2": "pizarroso",
|
21 |
+
"3": "hongo",
|
22 |
+
"4": "insecto",
|
23 |
+
"5": "germinado",
|
24 |
+
"6": "violeta"
|
25 |
+
},
|
26 |
+
"image_size": [
|
27 |
+
800,
|
28 |
+
1333
|
29 |
+
],
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 768,
|
32 |
+
"label2id": {
|
33 |
+
"fermentado": 0,
|
34 |
+
"insufi_fermen": 1,
|
35 |
+
"pizarroso": 2,
|
36 |
+
"hongo": 3,
|
37 |
+
"insecto": 4,
|
38 |
+
"germinado": 5,
|
39 |
+
"violeta": 6
|
40 |
+
},
|
41 |
+
"layer_norm_eps": 1e-12,
|
42 |
+
"model_type": "yolos",
|
43 |
+
"num_attention_heads": 3,
|
44 |
+
"num_channels": 3,
|
45 |
+
"num_detection_tokens": 100,
|
46 |
+
"num_hidden_layers": 12,
|
47 |
+
"patch_size": 16,
|
48 |
+
"qkv_bias": true,
|
49 |
+
"transformers_version": "4.33.0.dev0",
|
50 |
+
"use_mid_position_embeddings": false
|
51 |
+
}
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cef0d068b114c3076293b8ba8d985561d6d1dbf1db35455919cd0e2c93b5870
|
3 |
+
size 10571795
|
onnx/model_fp16.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3313a6bc63f30ee27bc2bda63a0b8109d8409fba5706cecbafabd3e8a1d69284
|
3 |
+
size 5329879
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dc437512a2fb98fbfc5692e58b757599a475961aa8b2187a58d373d4cefd85e
|
3 |
+
size 2977584
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": false,
|
3 |
+
"do_pad": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "ImageFeatureExtractor",
|
7 |
+
"resample": 2,
|
8 |
+
"rescale_factor": 0.00392156862745098,
|
9 |
+
"size": {
|
10 |
+
"width": 608,
|
11 |
+
"height": 608
|
12 |
+
}
|
13 |
+
}
|
quantize_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"per_channel": true,
|
3 |
+
"reduce_range": true,
|
4 |
+
"per_model_config": {
|
5 |
+
"model": {
|
6 |
+
"op_types": [
|
7 |
+
"Split",
|
8 |
+
"Concat",
|
9 |
+
"MaxPool",
|
10 |
+
"Slice",
|
11 |
+
"Resize",
|
12 |
+
"Softmax",
|
13 |
+
"Sigmoid",
|
14 |
+
"Conv",
|
15 |
+
"Reshape",
|
16 |
+
"Mul",
|
17 |
+
"Sub",
|
18 |
+
"Transpose",
|
19 |
+
"MatMul",
|
20 |
+
"Div",
|
21 |
+
"Add"
|
22 |
+
],
|
23 |
+
"weight_type": "QUInt8"
|
24 |
+
}
|
25 |
+
}
|
26 |
+
}
|