# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # python -m torch.distributed.launch --nproc_per_node=1 src/gpt2_beam.py \ # --data ./data/e2e/test.jsonl \ # --batch_size 1 \ # --seq_len 512 \ # --eval_len 64 \ # --model_card gpt2.md \ # --platform local \ # --beam 10 \ # --length_penalty 0.8 \ # --no_repeat_ngram_size 4 \ # --repetition_penalty 1.0 \ # --eos_token_id 628 \ # --lora_dim 4 \ # --lora_alpha 32 \ # --work_dir ./trained_models/GPT2_M/e2e \ # --output_file predict.26290.jsonl \ # --init_checkpoint ./trained_models/GPT2_M/e2e/model.26290.pt import argparse import time import math import os, sys import json import itertools from typing import Callable, Dict, Iterable, List, Optional, Tuple import torch from torch import Tensor, device, dtype, nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from torch.utils.data import DataLoader import torch.nn.functional as F torch.set_printoptions(threshold=100000) import numpy as np from gpu import ( add_gpu_params, parse_gpu, distributed_opt, distributed_gather, distributed_sync, cleanup ) from exp_utils import create_exp_dir from data_utils import FT_Dataset from model import GPT2Config, GPT2LMModel parser = argparse.ArgumentParser(description='PyTorch GPT2 beam decoding') add_gpu_params(parser) parser.add_argument('--data', type=str, default='../data/wikitext-103', help='location of the data corpus') parser.add_argument('--batch_size', type=int, default=10, help='batch size') parser.add_argument('--seq_len', type=int, default=512, help='number of tokens to predict') parser.add_argument('--eval_len', type=int, default=256, help='evaluation length') parser.add_argument('--min_length', type=int, default=0, help='minimum generation length') parser.add_argument('--model_card', default='gpt2.sm', choices=['gpt2.sm', 'gpt2.md', 'gpt2.lg'], help='model names') parser.add_argument('--init_checkpoint', default=None, type=str, help='initial checkpoint') parser.add_argument('--lora_dim', type=int, default=0, help='lora attn dimension') parser.add_argument('--lora_alpha', type=int, default=128, help='lora attn alpha') parser.add_argument('--work_dir', type=str, default=os.getenv('PT_OUTPUT_DIR', 'gpt2_model'), help='working folder') parser.add_argument('--beam', type=int, default=1, help='beam search size') parser.add_argument('--length_penalty', type=float, default=1.0, help='length penalty') parser.add_argument('--no_repeat_ngram_size', type=int, default=4, help='no_repeat_ngram_size') parser.add_argument('--repetition_penalty', type=float, default=1.0, help='repetition_penalty') parser.add_argument('--eos_token_id', action='append', type=int, default=[50256], help='eos token id') parser.add_argument('--output_file', type=str, default='beam_prediction.jsonl', help='output file name') def print_args(args): if args.rank == 0: print('=' * 100) for k, v in args.__dict__.items(): print(' - {} : {}'.format(k, v)) print('=' * 100) def _reorder_cache(past: Tuple, beam_idx: Tensor) -> Tuple[Tensor]: return tuple(layer_past.index_select(1, beam_idx).contiguous().detach() for layer_past in past) def _calc_banned_ngram_tokens( prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int ) -> None: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def _enforce_repetition_penalty_( lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty ): """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """ for i in range(batch_size * num_beams): print('prev_output_tokens.shape', prev_output_tokens.shape) print('prev_output_tokens[i].shape', prev_output_tokens[i].shape) for previous_token in set(prev_output_tokens[i].tolist()): # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if lprobs[i, previous_token] < 0: lprobs[i, previous_token] *= repetition_penalty else: lprobs[i, previous_token] /= repetition_penalty def _postprocess_next_token_scores( scores, history, cur_len, batch_size, num_beams, repetition_penalty=1.0, no_repeat_ngram_size=4, bad_words_ids=None, min_length=0, max_length=100, eos_token_id=None, ): # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0 and history is not None: _enforce_repetition_penalty_(scores, batch_size, num_beams, history, repetition_penalty) # score: batch_size * beam, vocab # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: for eos in eos_token_id: scores[:, eos] = -float("inf") if no_repeat_ngram_size > 0 and history is not None: # calculate a list of banned tokens to prevent repetitively generating the same ngrams num_batch_hypotheses = batch_size * num_beams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_batch_tokens = _calc_banned_ngram_tokens( history, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") return scores def _add_beam_candidate( best_score, best_sequence, batch_size, num_beams, beam_scores, history, eos_token_id=None ): last_tokens = history[:, -1] for _i in range(batch_size * num_beams): if eos_token_id is None or last_tokens[_i] in eos_token_id: cur_len = history.shape[-1] _score = beam_scores.view(-1)[_i] / cur_len ** args.length_penalty batch_id = _i // num_beams if not batch_id in best_score or best_score[batch_id] < _score: best_score[batch_id] = _score best_sequence[batch_id][:cur_len] = history[_i] beam_scores.view(-1)[_i] = -float("inf") def beam(model, data_iter, args): model.eval() total_loss = 0. start_time = time.time() all_predictions = {} with torch.no_grad(): for idx, data in enumerate(data_iter): data = {key: value for key, value in data.items()} _id = data['id'].to(args.device) _query = data['query'].to(args.device) _query_len = data['query_len'].to(args.device) ## local adaptation start. ## local adaptation end. output = None score = None batch_size = _id.size(0) num_beams = args.beam length_penalty = args.length_penalty _batch = torch.arange(0, _id.size(0), device=args.device, dtype=torch.long) past = None len_past = None _query = _query.repeat(1, num_beams).view(batch_size * num_beams, -1) _query_len = _query_len.unsqueeze(-1).repeat(1, num_beams).view(-1) _bbatch = _batch.unsqueeze(-1).repeat(1, num_beams).view(-1) # scores for each sentence in the beam beam_scores = torch.zeros( (batch_size, num_beams), dtype=torch.float, device=_query.device ) best_sequence = torch.zeros( (batch_size, args.eval_len), dtype=torch.long, device=_query.device ) best_score = {} history = None with torch.no_grad(): for i in range(0, args.eval_len): if i == 0: logits, past = model(_query) logits = logits[_bbatch, (_query_len-1).long(), :] # batch_size * beam, vocab else: #print('token_id.shape', token_id.shape, token_id) #print('past.shape', past[0].shape) #print('len_past.shape', len_past.shape, len_past) logits, past = model(token_id, past=past, len_past=len_past) logits = logits[:, -1, :] # batch_size * beam, vocab logits = _postprocess_next_token_scores( logits, history, i, batch_size, num_beams, repetition_penalty=args.repetition_penalty, no_repeat_ngram_size=args.no_repeat_ngram_size, min_length=args.min_length, eos_token_id=args.eos_token_id, ) softmax_probs = F.softmax(logits, dim=-1) ##_prob, _w_idx = torch.topk(softmax_probs, num_beams) # batch_size, beam vocab_size = softmax_probs.shape[-1] _logprob = torch.log(softmax_probs) # batch_size * beam, vocab if i == 0: next_scores = _logprob.view(batch_size, num_beams, -1)[:, 0, :] # batch_size, vocab else: next_scores = beam_scores.unsqueeze(-1) + _logprob.view(batch_size, num_beams, -1) next_scores = next_scores.view(batch_size, -1) # batch_size, beam * vocab next_scores, next_tokens = torch.topk( next_scores, num_beams, dim=1, largest=True, sorted=True ) # batch_size, num_beams beam_id = (next_tokens // vocab_size).view(-1) # batch_size * num_beams token_id = (next_tokens % vocab_size).view(-1).unsqueeze(-1) # batch_size, num_beams beam_idx = beam_id.view(batch_size, num_beams) + (_batch * num_beams).unsqueeze(-1) past = _reorder_cache(past, beam_idx.view(-1)) beam_scores = next_scores # batch_size, num_beams len_past = (_query_len + i).long() if history is None: history = token_id.detach() else: history = torch.cat((history[beam_idx.view(-1)], token_id.detach()), dim=1).detach() _add_beam_candidate( best_score, best_sequence, batch_size, num_beams, beam_scores, history, eos_token_id=args.eos_token_id ) _add_beam_candidate( best_score, best_sequence, batch_size, num_beams, beam_scores, history ) with torch.no_grad(): _id = distributed_gather(args, _id) output = distributed_gather(args, best_sequence) #score = distributed_gather(args, score) distributed_sync(args) if args.rank == 0: _id = _id.view(-1).cpu() output = output.view(-1, output.shape[-1]).cpu() #score = score.view(-1, score.shape[-1]).cpu() for _b in range(0, _id.shape[-1]): _i = int(_id[_b].item()) all_predictions[_i] = {} all_predictions[_i]['id'] = _i all_predictions[_i]['predict'] = output[_b].tolist() #all_predictions[_i]['score'] = score[_b].tolist() if idx % 10 == 0: print('inference samples', idx) # pred_file = os.path.join(args.work_dir, args.output_file) # print('saving prediction file', pred_file) # with open(pred_file, 'w') as writer: # for _i in all_predictions: # writer.write(json.dumps(all_predictions[_i]) + '\n') if args.rank == 0: pred_file = os.path.join(args.work_dir, args.output_file) print('saving prediction file', pred_file) with open(pred_file, 'w') as writer: for _i in all_predictions: writer.write(json.dumps(all_predictions[_i]) + '\n') if __name__ == '__main__': args = parser.parse_args() parse_gpu(args) print_args(args) if args.rank == 0: args.logging = create_exp_dir(args.work_dir) valid_data = FT_Dataset( args.data, args.batch_size, args.seq_len, args.eval_len, ) valid_data = valid_data.get_item_list(0, 1000) valid_sampler = torch.utils.data.distributed.DistributedSampler(valid_data) valid_loader = DataLoader( valid_data, batch_size=args.batch_size, num_workers=0, shuffle=False, pin_memory=False, drop_last=False, sampler=valid_sampler ) if args.model_card == 'gpt2.sm': config = GPT2Config( n_embd=768, n_layer=12, n_head=12, lora_attn_dim=args.lora_dim, lora_attn_alpha=args.lora_alpha, ) elif args.model_card == 'gpt2.md': config = GPT2Config( n_embd=1024, n_layer=24, n_head=16, lora_attn_dim=args.lora_dim, lora_attn_alpha=args.lora_alpha, ) elif args.model_card == 'gpt2.lg': config = GPT2Config( n_embd=1280, n_layer=36, n_head=20, lora_attn_dim=args.lora_dim, lora_attn_alpha=args.lora_alpha, ) lm_net = GPT2LMModel(config) if args.init_checkpoint is not None: print('loading model pretrained weight.') cp = torch.load(args.init_checkpoint, map_location=torch.device('cpu')) lm_net.load_weight(cp) lm_net = lm_net.cuda() print(lm_net.transformer.h[0].mlp) print('model sampling ...') beam(lm_net, valid_loader, args) distributed_sync(args) print('cleanup dist ...') cleanup(args)