File size: 13,704 Bytes
e7d695a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------
import argparse
import time
import math
import os, sys
import numpy as np
import itertools

import torch
import random
from torch.utils.data import DataLoader
torch.set_printoptions(threshold=100000)

from gpu import (
    add_gpu_params, 
    parse_gpu, 
    distributed_opt, 
    distributed_gather, 
    distributed_sync, 
    cleanup
)
from optimizer import (
    create_adam_optimizer, 
    create_optimizer_scheduler, 
    add_optimizer_params, 
    create_adam_optimizer_from_args
)

from data_utils import FT_Dataset
from model import GPT2Config, GPT2LMModel
from exp_utils import create_exp_dir

import loralib as lora

parser = argparse.ArgumentParser(description='PyTorch GPT2 ft script')

add_gpu_params(parser)
add_optimizer_params(parser)

parser.add_argument('--train_data', required=True, help='location of training data corpus')

parser.add_argument('--valid_data', required=True, help='location of validation data corpus')

parser.add_argument('--train_batch_size', type=int, default=8, help='training batch size')

parser.add_argument('--valid_batch_size', type=int, default=4, help='validation batch size')

parser.add_argument('--grad_acc', type=int, default=1, help='gradient accumulation steps')

parser.add_argument('--clip', type=float, default=0.0, help='gradient clip')

parser.add_argument('--seq_len', type=int, default=512, help='number of tokens to predict.')

parser.add_argument('--model_card', default='gpt2.md', choices=['gpt2.sm', 'gpt2.md', 'gpt2.lg'], 
                    help='model names')

parser.add_argument('--init_checkpoint', default=None, help='pretrained checkpoint path')

parser.add_argument('--fp16', action='store_true', help='train model with fp16')

parser.add_argument('--log_interval', type=int, default=100, help='log interval')

parser.add_argument('--eval_interval', type=int, default=2000, help='eval interval')

parser.add_argument('--save_interval', type=int, default=500, help='save interval')

parser.add_argument('--work_dir', type=str, default=os.getenv('PT_OUTPUT_DIR', 'gpt2_model'), 
                    help='working folder.')

parser.add_argument('--lora_dim', type=int, default=0, help='lora attn dimension')

parser.add_argument('--lora_alpha', type=int, default=128, help='lora attn alpha')

parser.add_argument('--obj', default='clm', choices=['jlm', 'clm'], 
                    help='language model training objective')

parser.add_argument('--lora_dropout', default=0.0, type=float, 
                    help='dropout probability for lora layers')

parser.add_argument('--label_smooth', default=0.0, type=float, help='label smoothing')

parser.add_argument('--roll_interval', type=int, default=-1, help='rolling interval')

parser.add_argument('--roll_lr', type=float, default=0.00001, help='rolling learning rate')

parser.add_argument('--roll_step', type=int, default=100, help='rolling step')

parser.add_argument('--eval_epoch', type=int, default=1, help='eval per number of epochs')

# influence model, calculate the influence score between two samples.
def print_args(args):
    if args.rank == 0:
        print('=' * 100)
        for k, v in args.__dict__.items():
            print(f'        - {k} : {v}')
        print('=' * 100)


class AverageMeter(object):
    """Computes and stores the average and current value

         Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262

    """
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def optimizer_step(_loss, _optimizer, _model, _schedule, args, is_update=True):
    if args.fp16:
        with amp.scale_loss(_loss, _optimizer) as _scaled_loss:
            _scaled_loss.backward()
    else:
        _loss.backward()
    
    # for name, param in _model.named_parameters():
    #     if param.requires_grad and param.grad is not None:
    #         print(f"Parameter name: {name}")
    #         print(f"Gradient value: {param.grad}")

    if is_update:
        if args.clip > 0:
            if args.fp16:
                torch.nn.utils.clip_grad_norm_(amp.master_params(_optimizer), args.clip)
            else:
                torch.nn.utils.clip_grad_norm_(_model.parameters(), args.clip)

        _optimizer.step()        
        _optimizer.zero_grad()

    if _schedule is not None:
        _schedule.step()

    # print(f"query[0].lora_B = {_model.module.transformer.h[0].attn.c_attn.lora_B}")


def evaluate(model, valid_loader, args):
    model.eval()
    total_loss = 0.
    start_time = time.time()

    avg_lm_loss = AverageMeter()

    with torch.no_grad():
        for idx, data in enumerate(valid_loader):
            data = {key: value for key, value in data.items()}

            _input = data['input'].to(args.device)
            _target = data['target'].to(args.device)
            _msk = data['mask'].to(args.device)

            _lm_logits, _loss = model(_input, lm_labels=_target, lm_mask=_msk) 
            loss = _loss.mean() 
            # print(f"logits={_lm_logits}, _loss={_loss}")
            
            avg_lm_loss.update(loss.item())

            if idx % 100 == 0:
                print('eval samples:', idx, 'loss:', loss.float())

        total_time = time.time() - start_time
        print('average loss', avg_lm_loss.avg)
    return avg_lm_loss.avg, math.exp(avg_lm_loss.avg)


def train_validate(

    model, 

    optimizer, 

    scheduler, 

    train_loader, 

    valid_loader, 

    args, 

    train_step=0, 

    epoch=0

):
    model.train()
    avg_lm_loss = AverageMeter()
    print('start to train the model................', epoch)
    log_start_time = time.time()
    best_val_ppl = None

    # train_loader.sampler.set_epoch(epoch)

    for idx, data in enumerate(train_loader):
        data = {key: value for key, value in data.items()}

        _input = data['input'].to(args.device)
        _target = data['target'].to(args.device)
        _msk = data['mask'].to(args.device)

        _lm_logits, _lm_loss = model(
            _input, lm_labels=_target, lm_mask=_msk, label_smooth=args.label_smooth
        ) 
        # print(_input[0])

        _lm_loss = _lm_loss.mean() 

        train_step += 1
        is_update = True if train_step % args.grad_acc == 0 else False
        avg_lm_loss.update(_lm_loss.item())
        optimizer_step(
            _lm_loss/(args.grad_acc), optimizer, model, scheduler, args, is_update=is_update
        )
        
        if train_step % args.log_interval == 0: 
            print(f"_lm_loss = {_lm_loss}")
            print(f"layer[0].lora_A = {model.module.transformer.h[0].attn.c_attn.lora_A[0,:100]}")
            elapsed = time.time() - log_start_time
            lr = optimizer.param_groups[0]['lr']
            log_str = f'| epoch {epoch:3d} step {train_step:>8d} | { idx + 1:>6d} batches | ' \
                      f'lr {lr:.3g} | ms/batch {elapsed * 1000 / args.log_interval:5.2f} | ' \
                      f'loss {avg_lm_loss.val:5.2f} | avg loss {avg_lm_loss.avg:5.2f} | ' \
                      f'ppl {math.exp(avg_lm_loss.avg):5.2f}'

            if args.rank == 0: 
                print(log_str)
            log_start_time = time.time()
            avg_lm_loss.reset()
        
        if train_step % args.save_interval == 0: 
            if args.rank == 0:
                model_path = os.path.join(args.work_dir, f'model.{train_step}.pt')
                print('saving checkpoint', model_path)
                torch.save({'model_state_dict': lora.lora_state_dict(model)}, model_path)
            distributed_sync(args)

        # evaluation interval
        if train_step % args.eval_interval == 0:
            eval_start_time = time.time()

            valid_loss, valid_ppl = evaluate(model, valid_loader, args)

            if best_val_ppl is None or valid_ppl < best_val_ppl:
                best_val_ppl = valid_ppl
                
            log_str = f'| Eval {train_step // args.eval_interval:3d} at step {train_step:>8d} | ' \
                      f'time: {time.time() - eval_start_time:5.2f}s | valid loss {valid_loss:5.2f} | ' \
                      f'valid ppl {valid_ppl:5.2f} | best ppl {best_val_ppl:5.2f} '

            if args.rank == 0:
                print('-' * 100)
                print(log_str)
                print('-' * 100)

            model.train()
            distributed_sync(args)

        if train_step == args.max_step:
            break

    if args.rank == 0:
        model_path = os.path.join(args.work_dir, f'model.{train_step}.pt')
        print('saving checkpoint', model_path)
        torch.save({'model_state_dict': model.state_dict()}, model_path) 
    distributed_sync(args)
    return train_step


if __name__ == '__main__':
    args = parser.parse_args()
    parse_gpu(args)
    print_args(args)

    if args.fp16:
        try:
            from apex import amp
        except Exception as e:
            warnings.warn('Could not import amp, apex may not be installed')

    torch.manual_seed(args.random_seed)
    random.seed(args.random_seed)
    
    if args.rank == 0:
        args.logging = create_exp_dir(args.work_dir)

    train_data = FT_Dataset(
        args.train_data, args.train_batch_size, args.seq_len, 
        joint_lm=args.obj=='jlm'
    )     
    
    valid_data = FT_Dataset(
        args.valid_data, args.valid_batch_size, args.seq_len,
    )

    train_loader = DataLoader(
        train_data, batch_size=args.train_batch_size, num_workers=0, 
        shuffle=False, pin_memory=False, drop_last=True,
        # sampler=torch.utils.data.distributed.DistributedSampler(train_data, seed=args.random_seed)
    )
    
    valid_loader = DataLoader(
        valid_data, batch_size=args.valid_batch_size, num_workers=0, 
        shuffle=False, pin_memory=False, drop_last=False,
        # sampler=torch.utils.data.distributed.DistributedSampler(valid_data, seed=args.random_seed)
    )
    print(f"train_loader={len(train_loader)}, train_data={len(train_data)}")
    print(f"valid_loader={len(valid_loader)}, valid_data={len(valid_data)}")

    if args.model_card == 'gpt2.sm':
        config = GPT2Config(
            n_embd=768, n_layer=12, n_head=12, 
            lora_attn_dim=args.lora_dim, 
            lora_attn_alpha=args.lora_alpha, 
            lora_dropout=args.lora_dropout,
        )
    elif args.model_card == 'gpt2.md':
        config = GPT2Config(
            n_embd=1024, n_layer=24, n_head=16, 
            lora_attn_dim=args.lora_dim, 
            lora_attn_alpha=args.lora_alpha, 
            lora_dropout=args.lora_dropout,
        )
    elif args.model_card == 'gpt2.lg':
        config = GPT2Config(
            n_embd=1280, n_layer=36, n_head=20, 
            lora_attn_dim=args.lora_dim, 
            lora_attn_alpha=args.lora_alpha, 
            lora_dropout=args.lora_dropout,
        )

    lm_net = GPT2LMModel(config)
    if args.init_checkpoint is not None:
        print('loading model pretrained weight.')
        lm_net.load_weight(torch.load(args.init_checkpoint))    

    lm_net = lm_net.cuda()

    if args.lora_dim > 0:
        lora.mark_only_lora_as_trainable(lm_net)
    
    print(lm_net)
    print(lm_net.transformer.h[0].attn.c_attn.weight.shape)
    print(lm_net.transformer.h[0].attn.c_attn.lora_A.shape)
    print(lm_net.transformer.h[0].attn.c_attn.lora_B.shape)
    config_dict = vars(config)
    for param, value in config_dict.items():
        print(f"{param}: {value}")
    print(args)
    optimizer = create_adam_optimizer_from_args(lm_net, args)
    print("optimizer: " + str(optimizer))

    if args.max_step is None:
        args.max_step = (args.max_epoch * train_data.num_batches + args.world_size - 1) // args.world_size
        print('set max_step:', args.max_step)
        print('train_data.num_batches:', train_data.num_batches)

    scheduler = create_optimizer_scheduler(optimizer, args)
    if args.fp16:
        lm_net, optimizer = amp.initialize(lm_net, optimizer, opt_level="O1")
    lm_net, optimizer = distributed_opt(args, lm_net, optimizer, grad_acc=args.grad_acc)

    try:
        train_step = 0
        for epoch in itertools.count(start=1):
            train_step = train_validate(
                lm_net, optimizer, scheduler, train_loader, valid_loader, args, 
                train_step=train_step, epoch=epoch
            )
            
            if train_step >= args.max_step or (args.max_epoch is not None and epoch >= args.max_epoch):
                if args.rank == 0:
                    print('-' * 100)
                    print('End of training')
                break
    except KeyboardInterrupt:
        if args.rank == 0:
            print('-' * 100)
            print('Exiting from training early')

    distributed_sync(args)
    print('cleanup dist ...')
    cleanup(args)