File size: 13,704 Bytes
e7d695a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import argparse
import time
import math
import os, sys
import numpy as np
import itertools
import torch
import random
from torch.utils.data import DataLoader
torch.set_printoptions(threshold=100000)
from gpu import (
add_gpu_params,
parse_gpu,
distributed_opt,
distributed_gather,
distributed_sync,
cleanup
)
from optimizer import (
create_adam_optimizer,
create_optimizer_scheduler,
add_optimizer_params,
create_adam_optimizer_from_args
)
from data_utils import FT_Dataset
from model import GPT2Config, GPT2LMModel
from exp_utils import create_exp_dir
import loralib as lora
parser = argparse.ArgumentParser(description='PyTorch GPT2 ft script')
add_gpu_params(parser)
add_optimizer_params(parser)
parser.add_argument('--train_data', required=True, help='location of training data corpus')
parser.add_argument('--valid_data', required=True, help='location of validation data corpus')
parser.add_argument('--train_batch_size', type=int, default=8, help='training batch size')
parser.add_argument('--valid_batch_size', type=int, default=4, help='validation batch size')
parser.add_argument('--grad_acc', type=int, default=1, help='gradient accumulation steps')
parser.add_argument('--clip', type=float, default=0.0, help='gradient clip')
parser.add_argument('--seq_len', type=int, default=512, help='number of tokens to predict.')
parser.add_argument('--model_card', default='gpt2.md', choices=['gpt2.sm', 'gpt2.md', 'gpt2.lg'],
help='model names')
parser.add_argument('--init_checkpoint', default=None, help='pretrained checkpoint path')
parser.add_argument('--fp16', action='store_true', help='train model with fp16')
parser.add_argument('--log_interval', type=int, default=100, help='log interval')
parser.add_argument('--eval_interval', type=int, default=2000, help='eval interval')
parser.add_argument('--save_interval', type=int, default=500, help='save interval')
parser.add_argument('--work_dir', type=str, default=os.getenv('PT_OUTPUT_DIR', 'gpt2_model'),
help='working folder.')
parser.add_argument('--lora_dim', type=int, default=0, help='lora attn dimension')
parser.add_argument('--lora_alpha', type=int, default=128, help='lora attn alpha')
parser.add_argument('--obj', default='clm', choices=['jlm', 'clm'],
help='language model training objective')
parser.add_argument('--lora_dropout', default=0.0, type=float,
help='dropout probability for lora layers')
parser.add_argument('--label_smooth', default=0.0, type=float, help='label smoothing')
parser.add_argument('--roll_interval', type=int, default=-1, help='rolling interval')
parser.add_argument('--roll_lr', type=float, default=0.00001, help='rolling learning rate')
parser.add_argument('--roll_step', type=int, default=100, help='rolling step')
parser.add_argument('--eval_epoch', type=int, default=1, help='eval per number of epochs')
# influence model, calculate the influence score between two samples.
def print_args(args):
if args.rank == 0:
print('=' * 100)
for k, v in args.__dict__.items():
print(f' - {k} : {v}')
print('=' * 100)
class AverageMeter(object):
"""Computes and stores the average and current value
Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def optimizer_step(_loss, _optimizer, _model, _schedule, args, is_update=True):
if args.fp16:
with amp.scale_loss(_loss, _optimizer) as _scaled_loss:
_scaled_loss.backward()
else:
_loss.backward()
# for name, param in _model.named_parameters():
# if param.requires_grad and param.grad is not None:
# print(f"Parameter name: {name}")
# print(f"Gradient value: {param.grad}")
if is_update:
if args.clip > 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(_optimizer), args.clip)
else:
torch.nn.utils.clip_grad_norm_(_model.parameters(), args.clip)
_optimizer.step()
_optimizer.zero_grad()
if _schedule is not None:
_schedule.step()
# print(f"query[0].lora_B = {_model.module.transformer.h[0].attn.c_attn.lora_B}")
def evaluate(model, valid_loader, args):
model.eval()
total_loss = 0.
start_time = time.time()
avg_lm_loss = AverageMeter()
with torch.no_grad():
for idx, data in enumerate(valid_loader):
data = {key: value for key, value in data.items()}
_input = data['input'].to(args.device)
_target = data['target'].to(args.device)
_msk = data['mask'].to(args.device)
_lm_logits, _loss = model(_input, lm_labels=_target, lm_mask=_msk)
loss = _loss.mean()
# print(f"logits={_lm_logits}, _loss={_loss}")
avg_lm_loss.update(loss.item())
if idx % 100 == 0:
print('eval samples:', idx, 'loss:', loss.float())
total_time = time.time() - start_time
print('average loss', avg_lm_loss.avg)
return avg_lm_loss.avg, math.exp(avg_lm_loss.avg)
def train_validate(
model,
optimizer,
scheduler,
train_loader,
valid_loader,
args,
train_step=0,
epoch=0
):
model.train()
avg_lm_loss = AverageMeter()
print('start to train the model................', epoch)
log_start_time = time.time()
best_val_ppl = None
# train_loader.sampler.set_epoch(epoch)
for idx, data in enumerate(train_loader):
data = {key: value for key, value in data.items()}
_input = data['input'].to(args.device)
_target = data['target'].to(args.device)
_msk = data['mask'].to(args.device)
_lm_logits, _lm_loss = model(
_input, lm_labels=_target, lm_mask=_msk, label_smooth=args.label_smooth
)
# print(_input[0])
_lm_loss = _lm_loss.mean()
train_step += 1
is_update = True if train_step % args.grad_acc == 0 else False
avg_lm_loss.update(_lm_loss.item())
optimizer_step(
_lm_loss/(args.grad_acc), optimizer, model, scheduler, args, is_update=is_update
)
if train_step % args.log_interval == 0:
print(f"_lm_loss = {_lm_loss}")
print(f"layer[0].lora_A = {model.module.transformer.h[0].attn.c_attn.lora_A[0,:100]}")
elapsed = time.time() - log_start_time
lr = optimizer.param_groups[0]['lr']
log_str = f'| epoch {epoch:3d} step {train_step:>8d} | { idx + 1:>6d} batches | ' \
f'lr {lr:.3g} | ms/batch {elapsed * 1000 / args.log_interval:5.2f} | ' \
f'loss {avg_lm_loss.val:5.2f} | avg loss {avg_lm_loss.avg:5.2f} | ' \
f'ppl {math.exp(avg_lm_loss.avg):5.2f}'
if args.rank == 0:
print(log_str)
log_start_time = time.time()
avg_lm_loss.reset()
if train_step % args.save_interval == 0:
if args.rank == 0:
model_path = os.path.join(args.work_dir, f'model.{train_step}.pt')
print('saving checkpoint', model_path)
torch.save({'model_state_dict': lora.lora_state_dict(model)}, model_path)
distributed_sync(args)
# evaluation interval
if train_step % args.eval_interval == 0:
eval_start_time = time.time()
valid_loss, valid_ppl = evaluate(model, valid_loader, args)
if best_val_ppl is None or valid_ppl < best_val_ppl:
best_val_ppl = valid_ppl
log_str = f'| Eval {train_step // args.eval_interval:3d} at step {train_step:>8d} | ' \
f'time: {time.time() - eval_start_time:5.2f}s | valid loss {valid_loss:5.2f} | ' \
f'valid ppl {valid_ppl:5.2f} | best ppl {best_val_ppl:5.2f} '
if args.rank == 0:
print('-' * 100)
print(log_str)
print('-' * 100)
model.train()
distributed_sync(args)
if train_step == args.max_step:
break
if args.rank == 0:
model_path = os.path.join(args.work_dir, f'model.{train_step}.pt')
print('saving checkpoint', model_path)
torch.save({'model_state_dict': model.state_dict()}, model_path)
distributed_sync(args)
return train_step
if __name__ == '__main__':
args = parser.parse_args()
parse_gpu(args)
print_args(args)
if args.fp16:
try:
from apex import amp
except Exception as e:
warnings.warn('Could not import amp, apex may not be installed')
torch.manual_seed(args.random_seed)
random.seed(args.random_seed)
if args.rank == 0:
args.logging = create_exp_dir(args.work_dir)
train_data = FT_Dataset(
args.train_data, args.train_batch_size, args.seq_len,
joint_lm=args.obj=='jlm'
)
valid_data = FT_Dataset(
args.valid_data, args.valid_batch_size, args.seq_len,
)
train_loader = DataLoader(
train_data, batch_size=args.train_batch_size, num_workers=0,
shuffle=False, pin_memory=False, drop_last=True,
# sampler=torch.utils.data.distributed.DistributedSampler(train_data, seed=args.random_seed)
)
valid_loader = DataLoader(
valid_data, batch_size=args.valid_batch_size, num_workers=0,
shuffle=False, pin_memory=False, drop_last=False,
# sampler=torch.utils.data.distributed.DistributedSampler(valid_data, seed=args.random_seed)
)
print(f"train_loader={len(train_loader)}, train_data={len(train_data)}")
print(f"valid_loader={len(valid_loader)}, valid_data={len(valid_data)}")
if args.model_card == 'gpt2.sm':
config = GPT2Config(
n_embd=768, n_layer=12, n_head=12,
lora_attn_dim=args.lora_dim,
lora_attn_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
elif args.model_card == 'gpt2.md':
config = GPT2Config(
n_embd=1024, n_layer=24, n_head=16,
lora_attn_dim=args.lora_dim,
lora_attn_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
elif args.model_card == 'gpt2.lg':
config = GPT2Config(
n_embd=1280, n_layer=36, n_head=20,
lora_attn_dim=args.lora_dim,
lora_attn_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
lm_net = GPT2LMModel(config)
if args.init_checkpoint is not None:
print('loading model pretrained weight.')
lm_net.load_weight(torch.load(args.init_checkpoint))
lm_net = lm_net.cuda()
if args.lora_dim > 0:
lora.mark_only_lora_as_trainable(lm_net)
print(lm_net)
print(lm_net.transformer.h[0].attn.c_attn.weight.shape)
print(lm_net.transformer.h[0].attn.c_attn.lora_A.shape)
print(lm_net.transformer.h[0].attn.c_attn.lora_B.shape)
config_dict = vars(config)
for param, value in config_dict.items():
print(f"{param}: {value}")
print(args)
optimizer = create_adam_optimizer_from_args(lm_net, args)
print("optimizer: " + str(optimizer))
if args.max_step is None:
args.max_step = (args.max_epoch * train_data.num_batches + args.world_size - 1) // args.world_size
print('set max_step:', args.max_step)
print('train_data.num_batches:', train_data.num_batches)
scheduler = create_optimizer_scheduler(optimizer, args)
if args.fp16:
lm_net, optimizer = amp.initialize(lm_net, optimizer, opt_level="O1")
lm_net, optimizer = distributed_opt(args, lm_net, optimizer, grad_acc=args.grad_acc)
try:
train_step = 0
for epoch in itertools.count(start=1):
train_step = train_validate(
lm_net, optimizer, scheduler, train_loader, valid_loader, args,
train_step=train_step, epoch=epoch
)
if train_step >= args.max_step or (args.max_epoch is not None and epoch >= args.max_epoch):
if args.rank == 0:
print('-' * 100)
print('End of training')
break
except KeyboardInterrupt:
if args.rank == 0:
print('-' * 100)
print('Exiting from training early')
distributed_sync(args)
print('cleanup dist ...')
cleanup(args)
|