Initial upload of Academic Sentiment Classifier
Browse files- README.md +136 -0
- config.json +24 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-classification
|
5 |
+
license: mit
|
6 |
+
tags:
|
7 |
+
- sentiment-analysis
|
8 |
+
- distilbert
|
9 |
+
- sequence-classification
|
10 |
+
- academic-peer-review
|
11 |
+
- openreview
|
12 |
+
---
|
13 |
+
|
14 |
+
# Academic Sentiment Classifier (DistilBERT)
|
15 |
+
|
16 |
+
DistilBERT-based sequence classification model that predicts the sentiment polarity of academic peer-review text (binary: negative vs positive). It supports research on evaluating the sentiment of scholarly reviews and AI-generated critique, enabling large-scale, reproducible measurements for academic-style content.
|
17 |
+
|
18 |
+
## Model details
|
19 |
+
|
20 |
+
- Architecture: DistilBERT for Sequence Classification (2 labels)
|
21 |
+
- Max input length used during training: 512 tokens
|
22 |
+
- Labels:
|
23 |
+
- LABEL_0 -> negative
|
24 |
+
- LABEL_1 -> positive
|
25 |
+
- Format: `safetensors`
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
Intended uses:
|
30 |
+
|
31 |
+
- Analyze sentiment of peer-review snippets, full reviews, or similar scholarly discourse.
|
32 |
+
- Evaluate the effect of attacks (e.g., positive/negative steering) on generated reviews by measuring polarity shifts.
|
33 |
+
|
34 |
+
Limitations:
|
35 |
+
|
36 |
+
- Binary polarity only (no neutral class); confidence scores should be interpreted with care.
|
37 |
+
- Domain-specific: optimized for academic review-style English text; may underperform on general-domain data.
|
38 |
+
- Not a replacement for human judgement or editorial decision-making.
|
39 |
+
|
40 |
+
Ethical considerations and bias:
|
41 |
+
|
42 |
+
- Scholarly reviews can contain technical jargon, hedging, and nuanced tone; polarity is an imperfect proxy for quality or fairness.
|
43 |
+
- Potential biases may reflect those present in the underlying corpus.
|
44 |
+
|
45 |
+
## Training data
|
46 |
+
|
47 |
+
The model was fine-tuned on a corpus of academic peer-review text curated from OpenReview review texts. The task is binary sentiment classification over review text spans.
|
48 |
+
|
49 |
+
Note: If you plan to use or extend the underlying data, please review the terms of use for OpenReview and any relevant dataset licenses.
|
50 |
+
|
51 |
+
## Training procedure (high level)
|
52 |
+
|
53 |
+
- Base model: DistilBERT (transformers)
|
54 |
+
- Objective: single-label binary classification
|
55 |
+
- Tokenization: standard DistilBERT tokenizer, truncation to 512 tokens
|
56 |
+
- Optimizer/scheduler: standard Trainer defaults (AdamW with linear schedule)
|
57 |
+
|
58 |
+
Exact hyperparameters may vary across runs; typical training uses AdamW with a linear learning rate schedule and truncation to 512 tokens.
|
59 |
+
|
60 |
+
## How to use
|
61 |
+
|
62 |
+
Basic pipeline usage:
|
63 |
+
|
64 |
+
```python
|
65 |
+
from transformers import pipeline
|
66 |
+
|
67 |
+
clf = pipeline(
|
68 |
+
task="text-classification",
|
69 |
+
model="YOUR_USERNAME/academic-sentiment-classifier",
|
70 |
+
tokenizer="YOUR_USERNAME/academic-sentiment-classifier",
|
71 |
+
return_all_scores=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
text = "The paper is clearly written and provides strong empirical support for the claims."
|
75 |
+
print(clf(text))
|
76 |
+
# Example output: [{'label': 'LABEL_1', 'score': 0.97}] # LABEL_1 -> positive
|
77 |
+
```
|
78 |
+
|
79 |
+
If you prefer friendly labels, you can map them:
|
80 |
+
|
81 |
+
```python
|
82 |
+
from transformers import pipeline
|
83 |
+
|
84 |
+
id2name = {"LABEL_0": "negative", "LABEL_1": "positive"}
|
85 |
+
clf = pipeline("text-classification", model="YOUR_USERNAME/academic-sentiment-classifier")
|
86 |
+
res = clf("This section lacks clarity and the experiments are inconclusive.")[0]
|
87 |
+
res["label"] = id2name.get(res["label"], res["label"]) # map to human-friendly label
|
88 |
+
print(res)
|
89 |
+
```
|
90 |
+
|
91 |
+
Batch inference:
|
92 |
+
|
93 |
+
```python
|
94 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
95 |
+
import torch
|
96 |
+
|
97 |
+
device = 0 if torch.cuda.is_available() else -1
|
98 |
+
tok = AutoTokenizer.from_pretrained("YOUR_USERNAME/academic-sentiment-classifier")
|
99 |
+
model = AutoModelForSequenceClassification.from_pretrained("YOUR_USERNAME/academic-sentiment-classifier")
|
100 |
+
|
101 |
+
texts = [
|
102 |
+
"I recommend acceptance; the methodology is solid and results are convincing.",
|
103 |
+
"Major concerns remain; the evaluation is incomplete and unclear.",
|
104 |
+
]
|
105 |
+
|
106 |
+
inputs = tok(texts, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
107 |
+
with torch.no_grad():
|
108 |
+
logits = model(**inputs).logits
|
109 |
+
probs = torch.softmax(logits, dim=-1)
|
110 |
+
pred_ids = probs.argmax(dim=-1)
|
111 |
+
|
112 |
+
# Map to friendly labels
|
113 |
+
id2name = {0: "negative", 1: "positive"}
|
114 |
+
preds = [id2name[i.item()] for i in pred_ids]
|
115 |
+
print(list(zip(texts, preds)))
|
116 |
+
```
|
117 |
+
|
118 |
+
## Evaluation
|
119 |
+
|
120 |
+
If you compute new metrics on public datasets or benchmarks, consider sharing them via a pull request to this model card.
|
121 |
+
|
122 |
+
## License
|
123 |
+
|
124 |
+
The model weights and card are released under the MIT license. Review and comply with any third-party data licenses if reusing the training data.
|
125 |
+
|
126 |
+
## Citation
|
127 |
+
|
128 |
+
If you use this model, please cite the project:
|
129 |
+
|
130 |
+
```bibtex
|
131 |
+
@software{academic_sentiment_classifier,
|
132 |
+
title = {Academic Sentiment Classifier (DistilBERT)},
|
133 |
+
year = {2025},
|
134 |
+
url = {https://huggingface.co/EvilScript/academic-sentiment-classifier}
|
135 |
+
}
|
136 |
+
```
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"dtype": "float32",
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"problem_type": "single_label_classification",
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": false,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"transformers_version": "4.56.1",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c9adf16f21badfe6569b17c551a5167f4deea78f91887519513153a4382eb9
|
3 |
+
size 267832560
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|