# coding=utf-8

""" Tokenization class for model EvaByte."""


from typing import List, Optional, Tuple

from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging


logger = logging.get_logger(__name__)


chat_template = """
{{- bos_token }}
{%- if messages[0]['role'] == 'system' %}
    {%- set system_message = messages[0]['content'] %}
    {%- set messages = messages[1:] %}
{%- else %}
    {%- set system_message = "" %}
{%- endif %}

{{- '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>'}}

{%- for message in messages %}
    {%- if (message['role'] != 'user') and (message['role'] != 'assistant') %}
        {{- raise_exception('Conversation roles must be user or assistant') }}
    {%- endif %}

    {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
{%- endfor %}

{%- if add_generation_prompt %}
    {{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{%- endif %}
"""

class EvaByteTokenizer(PreTrainedTokenizer):
    def __init__(
        self,
        bos_token="<bos>",
        eos_token="<eos>",
        unk_token="<unk>",
        sep_token="<sep>",
        pad_token="<pad>",
        extra_ids=59,
        additional_special_tokens=None,
        clean_up_tokenization_spaces=False,
        **kwargs,
    ) -> None:
        num_base_special_tokens = 5
        # Add extra_ids to the special token list
        if extra_ids > 0 and additional_special_tokens is None:
            additional_special_tokens = [f"<extra_id_{i}>" for i in range(num_base_special_tokens, extra_ids + num_base_special_tokens)]
        elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
            # Check that we have the right number of extra_id special tokens
            extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
            if extra_tokens != extra_ids:
                raise ValueError(
                    f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
                    " provided to EvaByteTokenizer. In this case the additional_special_tokens must include the"
                    " extra_ids tokens"
                )

        #### override some reserved tokens to support chat template
        for i, token in enumerate(additional_special_tokens):
            if token == "<extra_id_5>":
                token = "<repo_name>"
            elif token == "<extra_id_6>":
                token = "<file_sep>"
            elif token == "<extra_id_7>":
                token = "<t2v_token>"
            elif token == "<extra_id_8>":
                token = "<v2t_token>"
            elif token == "<extra_id_9>":
                token = "<|start_header_id|>"
            elif token == "<extra_id_10>":
                token = "<|end_header_id|>"
            elif token == "<extra_id_11>":
                token = "<|eot_id|>"
            additional_special_tokens[i] = token

        # lstrip and rstrip are set to False because we don't want to strip the whitespace from the special tokens
        # this would be important for the byte tokenizer
        pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
        bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
        eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
        unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
        sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token

        self._added_tokens_decoder = {
            0: pad_token,
            1: bos_token, 
            2: eos_token,
            3: unk_token, # unk_token is a placeholder
            4: sep_token,
            **{i: AddedToken(t, lstrip=False, rstrip=False) for i, t in enumerate(additional_special_tokens, start=num_base_special_tokens)},
        }
        self.offset = len(self._added_tokens_decoder)
        self._utf_vocab_size = 2**8  # utf is 8 bits
        self.add_bos_token = True
        self.add_eos_token = False
        super().__init__(
            pad_token=pad_token,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            extra_ids=0,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.chat_template = chat_template


    @property
    def vocab_size(self):
        return self._utf_vocab_size

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = bos_token_id + token_ids_0 + eos_token_id

        if token_ids_1 is not None:
            output = output + bos_token_id + token_ids_1 + eos_token_id

        return output

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        bos_token_id = [1] if self.add_bos_token else []
        eos_token_id = [1] if self.add_eos_token else []

        if token_ids_1 is None:
            return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
        return (
            bos_token_id
            + ([0] * len(token_ids_0))
            + eos_token_id
            + bos_token_id
            + ([0] * len(token_ids_1))
            + eos_token_id
        )

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
        sequence pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        if token_ids_1 is None, only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of ids.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)

        if token_ids_1 is not None:
            output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)

        return output

    def _tokenize(self, text: str) -> List[str]:
        """Take as input a string and return a list of strings (tokens) for words/sub-words"""
        tokens = [chr(i) for i in text.encode("utf-8")]
        return tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""

        if len(token) != 1:
            token_id = None
        else:
            token_id = ord(token) + self.offset

        return token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) to a byte (str) using the vocab."""
        token = chr(index - self.offset)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of bytes (string) to a single string."""
        bstring = b""
        for token in tokens:
            if token in self.added_tokens_decoder:
                tok_string = self.added_tokens_decoder[token].encode("utf-8")
            elif token in self.added_tokens_encoder:
                tok_string = token.encode("utf-8")
            else:
                tok_string = bytes([ord(token)])
            bstring += tok_string
        string = bstring.decode("utf-8", errors="ignore")
        return string

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        return ()