|
from typing import List, Optional, Tuple, Union |
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from .configuration_evabyte import EvaByteConfig |
|
from .multibyte_decoding_evabyte import MultiByteDecodingMixin |
|
try: |
|
import triton |
|
USE_TRITON_IMPL = True |
|
from .eva import EvaAttention |
|
from .eva_agg_kernel import triton_eva_agg_fwd |
|
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd |
|
except ImportError: |
|
USE_TRITON_IMPL = False |
|
print("WARNING: triton is not installed, using fallback EVA which might be slow and throw errors") |
|
from .eva_pt_ref import EvaAttention |
|
from .eva_cache import EvaCache, EvaStaticCacheForTriton |
|
|
|
MASK_MIN_VALUE = -10e10 |
|
|
|
def prepare_eva_attention_mask( |
|
seq_len, |
|
device, |
|
chunk_size, |
|
window_size, |
|
use_cache=False, |
|
cache=None |
|
): |
|
""" |
|
Prepare attention masks for EVA. |
|
|
|
""" |
|
chunk_causal_mask = None |
|
window_causal_mask = None |
|
if use_cache: |
|
cached_seq_len = cache.get_seq_length() |
|
total_seq_len = seq_len + cached_seq_len |
|
|
|
|
|
padded_seq_len = window_size * math.ceil(total_seq_len / window_size) |
|
num_chunks = padded_seq_len // chunk_size |
|
else: |
|
|
|
assert seq_len % chunk_size == 0 |
|
num_chunks = seq_len // chunk_size |
|
|
|
assert seq_len % window_size == 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
chunks_per_window = window_size // chunk_size |
|
if num_chunks >= chunks_per_window: |
|
chunk_causal_mask = torch.ones( |
|
(chunk_size, num_chunks, num_chunks), |
|
device=device, |
|
dtype=torch.bool |
|
).triu(0) |
|
|
|
num_blocks = num_chunks // chunks_per_window |
|
chunk_causal_mask = chunk_causal_mask.reshape( |
|
chunk_size, |
|
num_blocks, |
|
chunks_per_window, |
|
num_blocks, |
|
chunks_per_window |
|
).transpose(-2, -3) |
|
|
|
block_diag_zero = ( |
|
torch.eye(num_blocks, device=device, dtype=torch.bool) |
|
.unsqueeze(-1) |
|
.unsqueeze(-1) |
|
.unsqueeze(0) |
|
) |
|
|
|
|
|
chunk_causal_mask = chunk_causal_mask.masked_fill(block_diag_zero, True) |
|
|
|
|
|
chunk_causal_mask = ( |
|
chunk_causal_mask |
|
.transpose(-2, -3) |
|
.reshape(chunk_size, num_chunks, num_chunks) |
|
.transpose(-2, -3) |
|
.reshape(chunk_size * num_chunks, num_chunks) |
|
.unsqueeze(0) |
|
.unsqueeze(0) |
|
) |
|
else: |
|
chunk_causal_mask = torch.ones( |
|
(1, 1, chunk_size, num_chunks, num_chunks), |
|
device=device, |
|
dtype=torch.bool, |
|
).triu(0).transpose(-2, -3) |
|
chunk_causal_mask = chunk_causal_mask.reshape( |
|
1, 1, chunk_size * num_chunks, num_chunks |
|
) |
|
|
|
if use_cache: |
|
chunk_causal_mask = chunk_causal_mask[..., cached_seq_len : cached_seq_len + seq_len, :] |
|
|
|
window_causal_mask = torch.ones( |
|
(1, 1, 1, window_size, window_size), |
|
device=device |
|
).triu(1).to(torch.bool) |
|
return (chunk_causal_mask, window_causal_mask) |
|
|
|
def pad_to_multiple(tensor, multiple, dim=-2, value=0, create_mask=False, left_padding=False): |
|
assert dim < 0 |
|
seqlen = int(tensor.shape[dim]) |
|
m = seqlen / multiple |
|
if m.is_integer(): |
|
if create_mask: |
|
return tensor, torch.ones(size=(tensor.shape[0], tensor.shape[dim]), dtype=torch.bool, device=tensor.device) |
|
else: |
|
return tensor |
|
remainder = math.ceil(m) * multiple - seqlen |
|
pad_offset = (0,) * (-1 - dim) * 2 |
|
if left_padding: |
|
padded_res = F.pad(tensor, (*pad_offset, remainder, 0), value=value) |
|
else: |
|
padded_res = F.pad(tensor, (*pad_offset, 0, remainder), value=value) |
|
if create_mask: |
|
|
|
padding_mask = torch.ones(size=(padded_res.shape[0], padded_res.shape[dim]), dtype=torch.bool, device=padded_res.device) |
|
if left_padding: |
|
padding_mask[:, :remainder] = False |
|
else: |
|
padding_mask[:, -remainder:] = False |
|
return padded_res, padding_mask |
|
else: |
|
return padded_res |
|
|
|
class EvaByteRMSNorm(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.fp32_ln = config.fp32_ln |
|
self.variance_epsilon = config.rms_norm_eps |
|
self.add_unit_offset = config.norm_add_unit_offset |
|
if self.add_unit_offset: |
|
self.weight = nn.Parameter(torch.zeros(config.hidden_size)) |
|
else: |
|
self.weight = nn.Parameter(torch.ones(config.hidden_size)) |
|
|
|
def forward(self, hidden_states): |
|
if hasattr(self, 'config'): |
|
fp32_ln = self.config.fp32_ln |
|
else: |
|
fp32_ln = self.fp32_ln |
|
hidden_states = hidden_states.to(torch.float32 if fp32_ln else torch.bfloat16) |
|
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
if self.add_unit_offset: |
|
return (1 + self.weight) * hidden_states |
|
else: |
|
return self.weight * hidden_states |
|
|
|
class EvaByteRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, |
|
device=self.inv_freq.device, |
|
dtype=torch.get_default_dtype()) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
if seq_len < self.max_seq_len_cached: |
|
cos_slice = self.cos_cached.split(seq_len, dim=0)[0] |
|
sin_slice = self.sin_cached.split(seq_len, dim=0)[0] |
|
else: |
|
cos_slice = self.cos_cached |
|
sin_slice = self.sin_cached |
|
|
|
return ( |
|
cos_slice.to(dtype=x.dtype), |
|
sin_slice.to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class EvaByteLinearScalingRotaryEmbedding(EvaByteRotaryEmbedding): |
|
"""EvaByteRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class EvaByteDynamicNTKScalingRotaryEmbedding(EvaByteRotaryEmbedding): |
|
"""EvaByteRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ((self.scaling_factor * seq_len / self.max_position_embeddings) - |
|
(self.scaling_factor - 1))**(self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base**(torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class EvaByteMLP(nn.Module): |
|
def __init__(self, config, layer_idx: int = None): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
self.layer_idx = layer_idx |
|
self.config = config |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
class EvaByteDecoderLayer(nn.Module): |
|
def __init__(self, config: EvaByteConfig, layer_idx: int = None): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = EvaAttention(config=config, layer_idx=layer_idx) |
|
self.mlp = EvaByteMLP(config, layer_idx=layer_idx) |
|
self.input_layernorm = EvaByteRMSNorm(config) |
|
self.post_attention_layernorm = EvaByteRMSNorm(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cos: Optional[torch.Tensor] = None, |
|
sin: Optional[torch.Tensor] = None, |
|
multibyte_decoding: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
if self.config.fp32_skip_add: |
|
residual = residual.float() |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cos=cos, |
|
sin=sin, |
|
multibyte_decoding=multibyte_decoding) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
if self.config.fp32_skip_add: |
|
residual = residual.float() |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states, ) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, ) |
|
|
|
if use_cache: |
|
outputs += (present_key_value, ) |
|
return outputs |
|
|
|
class EvaBytePreTrainedModel(PreTrainedModel): |
|
config_class = EvaByteConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["EvaByteDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
std = getattr(self.config, "initializer_range", 0.02) |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, EvaByteModel): |
|
module.gradient_checkpointing = value |
|
|
|
class EvaByteModel(EvaBytePreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`EvaByteDecoderLayer`] |
|
|
|
Args: |
|
config: EvaByteConfig |
|
""" |
|
def __init__(self, config: EvaByteConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = self.config.max_position_embeddings |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([EvaByteDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)]) |
|
self.norm = EvaByteRMSNorm(config) |
|
|
|
self.gradient_checkpointing = False |
|
self.rope = config.rope_theta |
|
|
|
self.post_init() |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = EvaByteRotaryEmbedding(self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = EvaByteLinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = EvaByteDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def _helper_padding_mask( |
|
self, |
|
padding_mask, |
|
causal_mask |
|
): |
|
padding_mask = torch.logical_or(padding_mask, padding_mask.transpose(-1, -2)) |
|
return torch.logical_or(padding_mask, causal_mask) |
|
|
|
def _prepare_eva_generation_attn_mask_triton( |
|
self, |
|
attention_mask, |
|
input_ids, |
|
use_cache, |
|
past_key_values |
|
): |
|
batch_size, seq_len = input_ids.shape |
|
if use_cache and past_key_values.get_seq_length() > 0: |
|
|
|
if past_key_values.rf_mask[0] is not None: |
|
cur_rf_mask = torch.zeros( |
|
(batch_size, 1, seq_len, 1), |
|
dtype=past_key_values.rf_mask[0].dtype, |
|
device=past_key_values.rf_mask[0].device |
|
) |
|
else: |
|
cur_rf_mask = None |
|
|
|
if past_key_values.s_mask[0] is not None: |
|
cur_s_mask = torch.zeros( |
|
(batch_size, 1, seq_len, 1), |
|
dtype=past_key_values.s_mask[0].dtype, |
|
device=past_key_values.s_mask[0].device |
|
) |
|
else: |
|
cur_s_mask = None |
|
|
|
seen_tokens = past_key_values.get_seq_length() |
|
if seen_tokens <= self.config.window_size: |
|
rfa_chunks_dummy_mask = None |
|
else: |
|
if cur_s_mask is not None: |
|
chunks_per_window = int(self.config.window_size // self.config.chunk_size) |
|
|
|
num_windows_seen_so_far = seen_tokens // self.config.window_size |
|
rfa_chunks_dummy_mask = torch.zeros( |
|
(batch_size, 1, seq_len, num_windows_seen_so_far * chunks_per_window), |
|
dtype=past_key_values.s_mask[0].dtype, |
|
device=past_key_values.s_mask[0].device |
|
) |
|
else: |
|
rfa_chunks_dummy_mask = None |
|
|
|
return (cur_s_mask, cur_rf_mask, rfa_chunks_dummy_mask) |
|
|
|
if attention_mask is not None and torch.any(attention_mask == 0.0): |
|
|
|
padded_attention_mask = pad_to_multiple( |
|
attention_mask, |
|
self.config.window_size, |
|
dim=-1, |
|
value=0, |
|
create_mask=False, |
|
left_padding=False |
|
) |
|
|
|
padded_rf_mask = ~padded_attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) |
|
|
|
padded_w_attn_mask = padded_rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1).to(torch.bool) |
|
|
|
w_padding_mask = torch.logical_or(padded_w_attn_mask, padded_w_attn_mask.transpose(-1, -2)) |
|
w_causal_mask = torch.ones( |
|
(1, 1, 1, self.config.window_size, self.config.window_size), |
|
device=input_ids.device |
|
).triu(1).to(torch.bool) |
|
s_mask = torch.logical_or(w_padding_mask, w_causal_mask) |
|
s_mask = s_mask.reshape(batch_size, 1, -1, self.config.window_size) |
|
s_mask = s_mask[..., :seq_len, :] |
|
|
|
rf_mask = ~attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) |
|
return (s_mask, rf_mask) |
|
else: |
|
return (None, None) |
|
|
|
def _prepare_eva_generation_attn_mask( |
|
self, |
|
attention_mask, |
|
input_ids, |
|
use_cache, |
|
past_key_values |
|
): |
|
batch_size, seq_len = input_ids.shape |
|
if use_cache and past_key_values.get_seq_length() > 0: |
|
|
|
if past_key_values.rf_mask[0] is not None: |
|
rf_mask = torch.zeros( |
|
(batch_size, 1, seq_len, 1), |
|
dtype=past_key_values.rf_mask[0].dtype, |
|
device=past_key_values.rf_mask[0].device |
|
) |
|
else: |
|
rf_mask = None |
|
|
|
cur_causal_mask = torch.zeros( |
|
(batch_size, 1, seq_len, 1), |
|
dtype=torch.bool, |
|
device=input_ids.device |
|
) |
|
|
|
chunk_causal_mask = torch.ones( |
|
(batch_size, 1, seq_len, 1), |
|
dtype=torch.bool, |
|
device=input_ids.device |
|
) |
|
|
|
|
|
return (None, cur_causal_mask, chunk_causal_mask, rf_mask) |
|
|
|
true_num_chunks = seq_len // self.config.chunk_size |
|
chunk_causal_mask, _ = prepare_eva_attention_mask( |
|
seq_len, |
|
input_ids.device, |
|
self.config.chunk_size, |
|
self.config.window_size, |
|
use_cache=use_cache, |
|
cache=past_key_values |
|
) |
|
chunk_causal_mask = chunk_causal_mask[..., :seq_len, :true_num_chunks] |
|
if attention_mask is not None and torch.any(attention_mask == 0.0): |
|
|
|
rf_mask = ~attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) |
|
else: |
|
rf_mask = None |
|
|
|
if seq_len < self.config.window_size: |
|
cur_window_mask = torch.ones( |
|
(1, 1, seq_len, seq_len), |
|
device=input_ids.device |
|
).triu(1).to(torch.bool) |
|
if rf_mask is not None: |
|
cur_window_mask = self._helper_padding_mask(rf_mask, cur_window_mask) |
|
prev_window_mask = None |
|
else: |
|
if seq_len % self.config.window_size == 0: |
|
num_windows = seq_len // self.config.window_size |
|
cur_window_mask = None |
|
prev_window_mask = torch.ones( |
|
(1, 1, num_windows, self.config.window_size, self.config.window_size), |
|
device=input_ids.device |
|
).triu(1).to(torch.bool) |
|
if rf_mask is not None: |
|
prev_rf_mask = rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1) |
|
prev_window_mask = self._helper_padding_mask(prev_rf_mask, prev_window_mask) |
|
else: |
|
num_windows = seq_len // self.config.window_size |
|
remainder_tokens = seq_len % self.config.window_size |
|
cur_window_mask = torch.ones( |
|
(1, 1, remainder_tokens, remainder_tokens), |
|
device=input_ids.device |
|
).triu(1).to(torch.bool) |
|
prev_window_mask = torch.ones( |
|
(1, 1, num_windows, self.config.window_size, self.config.window_size), |
|
device=input_ids.device |
|
).triu(1).to(torch.bool) |
|
if rf_mask is not None: |
|
prev_rf_mask, cur_rf_mask = torch.split(rf_mask, [seq_len - remainder_tokens, remainder_tokens], dim=-2) |
|
cur_window_mask = self._helper_padding_mask(cur_rf_mask, cur_window_mask) |
|
prev_rf_mask = prev_rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1) |
|
prev_window_mask = self._helper_padding_mask(prev_rf_mask, prev_window_mask) |
|
|
|
return (prev_window_mask, cur_window_mask, chunk_causal_mask, rf_mask) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
multibyte_decoding: Optional[bool] = None, |
|
) -> Tuple: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else self.config.output_hidden_states) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
raise ValueError("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
|
|
batch_size, seq_len = input_ids.shape |
|
|
|
if (not self.training) and (not use_cache) and (not multibyte_decoding): |
|
|
|
|
|
use_cache = True |
|
device = input_ids.device if input_ids is not None else None |
|
if position_ids is None: |
|
position_ids = torch.arange(0, seq_len, device=device, dtype=int).reshape(1, -1).expand(batch_size, -1) |
|
|
|
|
|
if use_cache: |
|
if past_key_values is not None: |
|
assert isinstance(past_key_values, Cache) |
|
else: |
|
if not USE_TRITON_IMPL: |
|
past_key_values = EvaCache() |
|
else: |
|
past_key_values = EvaStaticCacheForTriton( |
|
input_ids.shape[0], |
|
self.config.num_attention_heads, |
|
self.config.window_size, |
|
self.config.hidden_size // self.config.num_attention_heads, |
|
self.config.num_hidden_layers, |
|
self.embed_tokens.weight.dtype, |
|
self.embed_tokens.weight.device, |
|
) |
|
|
|
if not multibyte_decoding: |
|
if use_cache: |
|
if USE_TRITON_IMPL: |
|
causal_mask = self._prepare_eva_generation_attn_mask_triton( |
|
attention_mask, |
|
input_ids, |
|
use_cache, |
|
past_key_values |
|
) |
|
else: |
|
causal_mask = self._prepare_eva_generation_attn_mask( |
|
attention_mask, |
|
input_ids, |
|
use_cache, |
|
past_key_values |
|
) |
|
else: |
|
assert self.training |
|
assert seq_len % self.config.window_size == 0 |
|
|
|
|
|
causal_mask = attention_mask |
|
else: |
|
assert use_cache |
|
causal_mask = attention_mask |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
max_seq_length = past_seen_tokens + inputs_embeds.shape[1] |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if position_ids is None: |
|
assert not use_cache, "during decoding we must explicitly pass position_ids to the model call" |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(past_seen_tokens, max_seq_length, device=device, dtype=int).reshape(1, -1).expand(batch_size, -1) |
|
|
|
cos, sin = self.rotary_emb(hidden_states, seq_len=max_seq_length) |
|
assert len(cos.shape) == 2, f"cos should be of shape (max_seq_len, head_dim), got {cos.shape} instead" |
|
assert sin.shape == cos.shape, f"sin should be of shape (max_seq_len, head_dim), got {sin.shape} instead" |
|
assert len(position_ids.shape) == 2, f"position_ids should be of 2D, got {position_ids.shape} instead" |
|
cos = cos[position_ids, :] |
|
sin = sin[position_ids, :] |
|
cos = cos.unsqueeze(1) |
|
sin = sin.unsqueeze(1) |
|
|
|
if USE_TRITON_IMPL and (not multibyte_decoding): |
|
|
|
if ( |
|
(not use_cache) or |
|
(use_cache and past_seen_tokens == 0) |
|
): |
|
window_mask, intra_chunk_mask = causal_mask |
|
|
|
if window_mask is not None: |
|
assert window_mask.dtype == torch.bool |
|
window_mask_float = window_mask.to(torch.float) |
|
window_mask_float = window_mask_float.masked_fill(window_mask.to(torch.bool), MASK_MIN_VALUE) |
|
window_mask_float = window_mask_float.reshape(batch_size, 1, -1, self.config.window_size) |
|
window_mask = window_mask_float.to(hidden_states.dtype) |
|
|
|
if intra_chunk_mask is not None: |
|
assert intra_chunk_mask.dtype == torch.bool |
|
intra_chunk_mask_float = intra_chunk_mask.to(torch.float) |
|
intra_chunk_mask_float = intra_chunk_mask_float.masked_fill(intra_chunk_mask.to(torch.bool), MASK_MIN_VALUE) |
|
intra_chunk_mask = intra_chunk_mask_float.to(hidden_states.dtype) |
|
causal_mask = (window_mask, intra_chunk_mask) |
|
|
|
if self.config.fp32_skip_add: |
|
hidden_states = hidden_states.float() |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, use_cache=None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cos=cos, |
|
sin=sin, |
|
multibyte_decoding=multibyte_decoding, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1], ) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class EvaByteForCausalLM(EvaBytePreTrainedModel, MultiByteDecodingMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
EvaBytePreTrainedModel.__init__(self, config) |
|
|
|
self.model = EvaByteModel(config) |
|
self.vocab_size = config.vocab_size |
|
|
|
if hasattr(config, "num_pred_heads") and config.num_pred_heads > 1: |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size * config.num_pred_heads, bias=False) |
|
else: |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def _prepare_training_attn_mask( |
|
self, |
|
target_token_type_ids, |
|
use_doc_boundary_attention, |
|
EOS_TOKEN_TYPE_ID=None, |
|
PAD_TOKEN_TYPE_ID=None, |
|
): |
|
''' |
|
This function prepares the attention mask for training byte models. |
|
target_token_type_ids: |
|
Tensor of shape (batch_size, seq_len), marking the token type ids |
|
for the target sequence. In particular, we should have |
|
- target_token_type_ids[i, j] = EOS_TOKEN_TYPE_ID |
|
if the j-th token in the i-th sequence is the end of an article. |
|
- target_token_type_ids[i, j] = PAD_TOKEN_TYPE_ID |
|
if the j-th token in the i-th sequence is the padding token. |
|
use_doc_boundary_attention: bool, |
|
whether to enable doc boundary attention. |
|
EOS_TOKEN_TYPE_ID: int, |
|
the token type id for the end of an article. |
|
PAD_TOKEN_TYPE_ID: int, |
|
the token type id for the padding token. |
|
''' |
|
assert self.training |
|
batch_size, num_tokens = target_token_type_ids.shape |
|
|
|
chunk_causal_mask, window_causal_mask = prepare_eva_attention_mask( |
|
num_tokens, |
|
target_token_type_ids.device, |
|
chunk_size=self.config.chunk_size, |
|
window_size=self.config.window_size, |
|
use_cache=False, |
|
cache=None |
|
) |
|
if use_doc_boundary_attention: |
|
|
|
end_token_ids = {EOS_TOKEN_TYPE_ID, PAD_TOKEN_TYPE_ID} |
|
token_types = torch.zeros(batch_size, num_tokens) |
|
for sequence_idx, sequence in enumerate(target_token_type_ids): |
|
num_articles = 0 |
|
start_index = 0 |
|
|
|
|
|
|
|
for token_idx, token_type_id in enumerate(sequence): |
|
if start_index is not None and token_type_id.item() in end_token_ids: |
|
num_articles += 1 |
|
end_index = token_idx if token_type_id == PAD_TOKEN_TYPE_ID else token_idx + 1 |
|
token_types[sequence_idx][start_index:end_index] = num_articles |
|
start_index = None |
|
elif start_index is None and token_type_id not in end_token_ids: |
|
start_index = token_idx + 1 |
|
|
|
assert num_tokens % self.config.chunk_size == 0, "Number of tokens must be divisible by chunk size" |
|
assert num_tokens % self.config.window_size == 0, "Number of tokens must be divisible by window size" |
|
num_chunks = num_tokens // self.config.chunk_size |
|
num_windows = num_tokens // self.config.window_size |
|
|
|
article_separator = 0 |
|
|
|
|
|
|
|
|
|
|
|
token_types_windows = token_types.reshape(batch_size, num_windows, self.config.window_size, 1) |
|
token_types_windows_t = token_types_windows.transpose(-1, -2) |
|
|
|
token_types_windows = torch.where(token_types_windows == article_separator, -1, token_types_windows) |
|
window_3d_mask = (token_types_windows == token_types_windows_t) |
|
window_3d_mask = ~window_3d_mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
token_types_chunks = token_types.reshape(batch_size, num_chunks, self.config.chunk_size) |
|
inter_chunk_mask = torch.zeros((batch_size, num_tokens, num_chunks), dtype=torch.bool) |
|
intra_chunk_mask = torch.ones_like(token_types_chunks, dtype=torch.bool) |
|
|
|
for chunk_idx in range(num_chunks): |
|
for batch_idx in range(batch_size): |
|
|
|
chunk = token_types_chunks[batch_idx, chunk_idx] |
|
unique_elements = torch.unique(chunk, sorted=True).tolist() |
|
|
|
|
|
for token_type in unique_elements: |
|
if token_type == article_separator: |
|
continue |
|
token_mask = (token_types[batch_idx] == token_type) |
|
inter_chunk_mask[batch_idx, :, chunk_idx] |= token_mask |
|
|
|
|
|
unique_elements = [x for x in unique_elements if x != article_separator] |
|
if len(unique_elements) > 1 and chunk[-1] != article_separator: |
|
intra_chunk_mask[batch_idx, chunk_idx] = (chunk == unique_elements[-1]) |
|
|
|
inter_chunk_mask = ~inter_chunk_mask |
|
intra_chunk_mask = ~intra_chunk_mask |
|
|
|
window_mask = torch.logical_or(window_causal_mask, window_3d_mask.unsqueeze(1)) |
|
inter_chunk_mask = torch.logical_or(chunk_causal_mask, inter_chunk_mask.unsqueeze(1)) |
|
intra_chunk_mask = intra_chunk_mask.unsqueeze(1).unsqueeze(-1) |
|
|
|
joint_mask = torch.cat([window_mask, inter_chunk_mask.reshape(*window_mask.shape)], dim=-1) |
|
attention_mask = (joint_mask, intra_chunk_mask) |
|
else: |
|
joint_mask = torch.cat([window_causal_mask, chunk_causal_mask.reshape(*window_causal_mask.shape)], dim=-1) |
|
attention_mask = (joint_mask, None) |
|
return attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_all_pred_logits: Optional[bool] = None, |
|
multibyte_decoding: Optional[bool] = None) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is None: |
|
assert past_key_values is None |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
multibyte_decoding=multibyte_decoding, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.lm_head(hidden_states) |
|
if self.config.fp32_logits: |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
if hasattr(self.config, "num_pred_heads") and self.config.num_pred_heads > 1: |
|
shift_logits = logits.view(logits.shape[0], logits.shape[1], self.config.num_pred_heads, self.config.vocab_size) |
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
else: |
|
shift_logits = logits.view(-1, self.config.vocab_size) |
|
shift_labels = labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if hasattr(self.config, "num_pred_heads") and self.config.num_pred_heads > 1: |
|
all_pred_logits = logits.reshape(logits.shape[0], logits.shape[1], self.config.num_pred_heads, self.config.vocab_size) |
|
|
|
if return_all_pred_logits: |
|
logits = all_pred_logits |
|
else: |
|
logits = all_pred_logits[..., 0, :] |
|
|
|
if not return_dict: |
|
output = (logits, ) + outputs[1:] |
|
return (loss, ) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation(self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
use_cache=True, |
|
**kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_length = 0 |
|
if past_key_values is not None: |
|
assert isinstance(past_key_values, Cache) |
|
past_length = past_key_values.get_seq_length() |
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] |
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
assert position_ids is not None |
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) |
|
return reordered_past |
|
|