File size: 18,063 Bytes
474addc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from typing import Optional, Tuple, Union
import torch
from torch import nn
MASK_MIN_VALUE = -10e10
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""
Rotates half the hidden dims (last dim) of the input.
Args:
x: Rotary embedded tensor
Return:
Tensor with half of last dim negated and rotated to the front.
"""
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
position_ids: torch.Tensor) -> torch.Tensor:
"""
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
The legends for dimensions are defined as:
num_heads: number of attention heads
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
maximum lenghth, e.g. the length of static sequence length of KV cache
Args:
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
(batch_size, current_seq_len).
Returns:
Embedded query and key tensor of same size as input.
"""
bs, nheads, cur_seq_len, head_dim = q.shape
assert len(
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
assert list(k.shape[2:]) == [cur_seq_len,
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def attention_op(
q,
k,
v,
attn_mask,
mixedp_attn,
head_dim_scaling
):
attn = torch.matmul(q, k.transpose(-2, -1))
if mixedp_attn:
attn = attn.to(torch.float)
attn = attn * head_dim_scaling
if attn_mask is not None:
attn = attn.masked_fill(attn_mask, MASK_MIN_VALUE)
attn_weights = torch.softmax(attn, dim=-1).to(q.dtype)
attn_output = torch.matmul(attn_weights, v)
return attn_output
def prm_projection(
x: torch.Tensor,
projection_matrix: torch.Tensor,
mixedp_attn: bool = False
):
"""
Constructs nonnegative kernel features for fast softmax attention.
Args:
x: input for which features are computed
projection_matrix: random matrix used to compute features
Returns:
Random features for fast attention.
"""
# x : [..., m, d]
# proj : [..., r, d]
scaling_factor = (x.shape[-1] ** -0.5)
proj_x = torch.matmul(projection_matrix, x.transpose(-1, -2)) # [..., r, m]
norm = torch.sum(x ** 2, dim=-1).unsqueeze(-2) * 0.5 # [..., 1]
if mixedp_attn:
proj_x = proj_x.to(torch.float)
norm = norm.to(torch.float)
phi_x = scaling_factor * (proj_x - norm)
return phi_x
class EvaAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.head_dim_scaling = self.head_dim ** -0.5
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.window_size = config.window_size
self.num_chunks = config.num_chunks
self.chunk_size = config.chunk_size
if self.chunk_size is not None:
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
# chunk_size overrides the number of landmarks
self.num_chunks = None
self.chunks_per_window = int(self.window_size // self.chunk_size)
self.random_feature_dim = 1
self.adaptive_phi = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
self.adaptive_mu_k = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
def _generate_feature_map(self, rf_q, rf_k, rf_v):
rf_k_logits = torch.sum(self.adaptive_mu_k.to(rf_k.dtype) * rf_k, dim=-1, keepdim=True) # b h c m 1
if self.config.mixedp_attn:
rf_k_logits = rf_k_logits.to(torch.float)
rf_k_weights = torch.softmax(rf_k_logits, dim=-2).to(rf_k.dtype)
rf_k_bar = torch.sum(rf_k_weights * rf_k, dim=-2)
weights = self.adaptive_phi.to(rf_k.dtype)
return weights, rf_k_bar
def _calculate_chunk_rfa_cache(self, rf_q, rf_k, rf_v, weights, rf_mask=None):
proj_x = torch.sum(weights * rf_k, dim=-1, keepdim=True)
norm = torch.sum(rf_k ** 2, dim=-1, keepdim=True) * 0.5 # [..., 1]
if self.config.mixedp_attn:
proj_x = proj_x.to(torch.float)
norm = norm.to(torch.float)
log_phi_k = self.head_dim_scaling * (proj_x - norm)
if rf_mask is not None:
log_phi_k = log_phi_k.masked_fill(rf_mask, MASK_MIN_VALUE)
# [b, h, c, m, r]
softmax_phi_k = torch.softmax(log_phi_k, dim=-2).to(rf_k.dtype)
softmax_phi_k_v = torch.sum(softmax_phi_k * rf_v, dim=-2)
# [b, h, c, r, m] [b, h, c, m, d] -> [b, h, c, r, d]
# softmax_phi_k_v = torch.matmul(softmax_phi_k.transpose(-1, -2), rf_v).squeeze(-2)
log_sum_phi_k = None
return softmax_phi_k_v, log_sum_phi_k
def _calculate_chunk_rfa(self, q, softmax_phi_k_v, log_sum_phi_k, weights):
if self.random_feature_dim == 1:
# when r = 1, the snis weights becomes 1, so this takes no effect
# [b, h, c, r, d] -> [b, h, c, d]
return softmax_phi_k_v
else:
# [b, h, c, r, d] [b, h, 1, s, d] -> [b, h, c, r, s]
log_phi_q = prm_projection(q.unsqueeze(-3), weights, self.config.mixedp_attn)
# [b, h, c, r, s] [b, h, c, r, 1] -> [b, h, c, r, s]
sniw = torch.softmax(log_phi_q + log_sum_phi_k, dim=-1).to(q.dtype)
# [b, h, c, r, s] [b, h, c, r, d] -> [b, h, c, s, d] -> [b, h, s, c, d]
rfa_per_chunk = torch.matmul(sniw.transpose(-1, -2), softmax_phi_k_v).transpose(-3, -2)
return rfa_per_chunk
def window_partition(self, x, window_size=None):
window_size = window_size if window_size is not None else self.window_size
gw, d = x.shape[-2:]
leading_dims = x.shape[:-2]
n_groups = gw // window_size
return x.reshape(*leading_dims, n_groups, window_size, d)
def window_merge(self, x, window_size=None):
g, w, d = x.shape[-3:]
leading_dims = x.shape[:-3]
return x.reshape(*leading_dims, g * w, d)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
multibyte_decoding: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
############################################
# initialize past states if not provided
############################################
if use_cache and past_key_value is None:
raise ValueError
if use_cache and multibyte_decoding:
raise NotImplementedError("Multibyte decoding is not supported for PyTorch native implementation")
# assert isinstance(attention_mask, tuple)
if len(attention_mask) == 4:
assert use_cache
prev_causal_mask, cur_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
elif len(attention_mask) == 3:
assert not use_cache
window_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
else:
raise NotImplementedError("Only attention-mask tuple with length 2 or 3 is supported")
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if use_cache:
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# compute q, k, v stats for the local window
############################################
if use_cache:
(prev_w_q, prev_w_k, prev_w_v), (cur_w_q, cur_w_k, cur_w_v) = past_key_value.update_singletons(
q,
k,
v,
self.layer_idx,
self.window_size,
self.singleton_update
)
else:
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
prev_w_k = self.window_partition(k) # [b, h, w, j, d]
prev_w_v = self.window_partition(v) # [b, h, w, j, d]
# during training, we assume window_size divides seq_len so no remainders
cur_w_q = cur_w_k = cur_w_v = None
############################################
# compute q, k, v stats for chunk-level RFAs
############################################
if use_cache:
dump_q, dump_k, dump_v = past_key_value.update_chunks(q, k, v, self.layer_idx, self.chunk_size)
else:
dump_q, dump_k, dump_v = q, k, v
if use_cache:
prev_s_mask, cur_s_mask, prev_chunk_mask, cur_chunk_mask, dump_rf_mask = past_key_value.update_mask(
prev_s_mask=prev_causal_mask,
cur_s_mask=cur_causal_mask,
chunk_mask=chunk_causal_mask,
rf_mask=intra_chunk_mask,
layer_idx=self.layer_idx,
window_size=self.window_size,
chunk_size=self.chunk_size,
singleton_update=self.singleton_update
)
else:
prev_s_mask = window_causal_mask # [1, 1, w, i, j]
cur_s_mask = None
prev_chunk_mask = self.window_partition(chunk_causal_mask)
cur_chunk_mask = None
dump_rf_mask = intra_chunk_mask
if prev_s_mask.shape[-3] == 1:
# need to expand
prev_s_mask = prev_s_mask.expand(-1, -1, prev_chunk_mask.shape[-3], -1, -1)
if (
dump_q is not None and
dump_k is not None and
dump_v is not None
):
# [b, h, c, j, d]
rf_q = self.window_partition(dump_q, window_size=self.chunk_size)
# [b, h, c, j, d]
rf_k = self.window_partition(dump_k, window_size=self.chunk_size)
# [b, h, c, j, d]
rf_v = self.window_partition(dump_v, window_size=self.chunk_size)
if dump_rf_mask is not None:
rf_mask = self.window_partition(dump_rf_mask, window_size=self.chunk_size)
rf_q = rf_q.masked_fill(rf_mask, 0.)
rf_k = rf_k.masked_fill(rf_mask, 0.)
rf_v = rf_v.masked_fill(rf_mask, 0.)
else:
rf_mask = None
else:
rf_q = None
rf_k = None
rf_v = None
rf_mask = None
if rf_q is not None:
# import pdb; pdb.set_trace()
weights, rf_k_bar = self._generate_feature_map(rf_q, rf_k, rf_v)
softmax_phi_k_v, log_sum_phi_k = self._calculate_chunk_rfa_cache(rf_q, rf_k, rf_v, weights, rf_mask=rf_mask)
if use_cache:
softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.update_chunk_rfas(
softmax_phi_k_v, log_sum_phi_k, rf_k_bar, self.layer_idx, 1
)
elif use_cache:
weights = None
softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.get_chunk_rfas(self.layer_idx)
else:
weights = None
softmax_phi_k_v = None
log_sum_phi_k = None
rf_k_bar = None
if rf_k_bar is not None:
rfa_per_chunk = self._calculate_chunk_rfa(q, softmax_phi_k_v, log_sum_phi_k, weights)
############################################
# compute meta-attention weights for
# - group-wise RFAs and
# - singletons (equivalent to exact local attention)
############################################
if prev_w_k is not None:
if rf_k_bar is not None:
num_windows = prev_w_k.shape[-3]
# rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
# -> [b, h, 1, c, d] -> [b, h, w, c, d]
prev_rf_k_bar = rf_k_bar.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
prev_rfa_per_chunk = rfa_per_chunk.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
prev_agg_k = torch.cat([prev_w_k, prev_rf_k_bar], dim=-2)
prev_agg_v = torch.cat([prev_w_v, prev_rfa_per_chunk], dim=-2)
prev_attn_mask = torch.cat([prev_s_mask, prev_chunk_mask], dim=-1)
else:
prev_agg_k = prev_w_k
prev_agg_v = prev_w_v
prev_attn_mask = prev_s_mask
prev_attn_output = attention_op(
q=prev_w_q,
k=prev_agg_k,
v=prev_agg_v,
attn_mask=prev_attn_mask,
mixedp_attn=self.config.mixedp_attn,
head_dim_scaling=self.head_dim_scaling
)
prev_attn_output = self.window_merge(prev_attn_output)
if cur_w_k is not None:
if rf_k_bar is not None:
# rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
# cur_w_k and cur_w_v also has shape [b, h, m, d]
cur_agg_k = torch.cat([cur_w_k, rf_k_bar], dim=-2)
cur_agg_v = torch.cat([cur_w_v, rfa_per_chunk], dim=-2)
cur_attn_mask = torch.cat([cur_s_mask, cur_chunk_mask], dim=-1)
else:
cur_agg_k = cur_w_k
cur_agg_v = cur_w_v
cur_attn_mask = cur_s_mask
cur_attn_output = attention_op(
q=cur_w_q,
k=cur_agg_k,
v=cur_agg_v,
attn_mask=cur_attn_mask,
mixedp_attn=self.config.mixedp_attn,
head_dim_scaling=self.head_dim_scaling
)
if prev_w_k is not None and cur_w_k is not None:
attn_output = torch.cat([prev_attn_output, cur_attn_output], dim=-2)
elif prev_w_k is not None:
attn_output = prev_attn_output
elif cur_w_k is not None:
attn_output = cur_attn_output
else:
raise ValueError("There must be some bug")
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value |