File size: 18,063 Bytes
474addc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from typing import Optional, Tuple, Union
import torch
from torch import nn

MASK_MIN_VALUE = -10e10

def rotate_half(x: torch.Tensor) -> torch.Tensor:
    """
    Rotates half the hidden dims (last dim) of the input.
    Args:
        x: Rotary embedded tensor
    Return:
        Tensor with half of last dim negated and rotated to the front.
    """
    x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
                         position_ids: torch.Tensor) -> torch.Tensor:
    """
    Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.

    The legends for dimensions are defined as:
    num_heads: number of attention heads
    current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
    max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
                 maximum lenghth, e.g. the length of static sequence length of KV cache

                 
    Args:
        q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
        k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
        cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
        sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
        position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
                      (batch_size, current_seq_len).

    Returns:
        Embedded query and key tensor of same size as input.
    
    """
    bs, nheads, cur_seq_len, head_dim = q.shape
    assert len(
        k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
    assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
    assert list(k.shape[2:]) == [cur_seq_len,
                                 head_dim], f"k has different current_seq_len and/or head_dim compared to q"
    assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
    assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
            f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def attention_op(
        q,
        k,
        v,
        attn_mask,
        mixedp_attn,
        head_dim_scaling
    ):
    attn = torch.matmul(q, k.transpose(-2, -1))
    if mixedp_attn:
        attn = attn.to(torch.float)
    attn = attn * head_dim_scaling
    if attn_mask is not None:
        attn = attn.masked_fill(attn_mask, MASK_MIN_VALUE)
    
    attn_weights = torch.softmax(attn, dim=-1).to(q.dtype)
    attn_output = torch.matmul(attn_weights, v)
    return attn_output

def prm_projection(
    x: torch.Tensor,
    projection_matrix: torch.Tensor,
    mixedp_attn: bool = False
    ):
    """
    Constructs nonnegative kernel features for fast softmax attention.
    Args:
    x: input for which features are computed
    projection_matrix: random matrix used to compute features
    Returns:
    Random features for fast attention.
    """
    # x : [..., m, d]
    # proj : [..., r, d]
    scaling_factor = (x.shape[-1] ** -0.5)
    proj_x = torch.matmul(projection_matrix, x.transpose(-1, -2)) # [..., r, m]
    norm = torch.sum(x ** 2, dim=-1).unsqueeze(-2) * 0.5 # [..., 1]
    if mixedp_attn:
        proj_x = proj_x.to(torch.float)
        norm = norm.to(torch.float)
    phi_x =  scaling_factor * (proj_x - norm)
    return phi_x

class EvaAttention(nn.Module):
    def __init__(self, config, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.head_dim_scaling = self.head_dim ** -0.5

        self.max_position_embeddings = config.max_position_embeddings

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.window_size = config.window_size
        
        self.num_chunks = config.num_chunks
        self.chunk_size = config.chunk_size
        if self.chunk_size is not None:
            assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
            # chunk_size overrides the number of landmarks
            self.num_chunks = None

        self.chunks_per_window = int(self.window_size // self.chunk_size)
        self.random_feature_dim = 1
        self.adaptive_phi = nn.Parameter(
            torch.randn(
                1,
                self.num_heads,
                1,
                1,
                self.head_dim
            ).clamp(-1., 1.) * self.head_dim_scaling
        )
        self.adaptive_mu_k = nn.Parameter(
            torch.randn(
                1,
                self.num_heads,
                1,
                1,
                self.head_dim
            ).clamp(-1., 1.) * self.head_dim_scaling
        )

    def _generate_feature_map(self, rf_q, rf_k, rf_v):
        rf_k_logits = torch.sum(self.adaptive_mu_k.to(rf_k.dtype) * rf_k, dim=-1, keepdim=True) # b h c m 1
        if self.config.mixedp_attn:
            rf_k_logits = rf_k_logits.to(torch.float)
        rf_k_weights = torch.softmax(rf_k_logits, dim=-2).to(rf_k.dtype)
        rf_k_bar = torch.sum(rf_k_weights * rf_k, dim=-2)
        weights = self.adaptive_phi.to(rf_k.dtype)
        return weights, rf_k_bar

    def _calculate_chunk_rfa_cache(self, rf_q, rf_k, rf_v, weights, rf_mask=None):
        proj_x = torch.sum(weights * rf_k, dim=-1, keepdim=True)
        norm = torch.sum(rf_k ** 2, dim=-1, keepdim=True) * 0.5 # [..., 1]
        if self.config.mixedp_attn:
            proj_x = proj_x.to(torch.float)
            norm = norm.to(torch.float)
        log_phi_k = self.head_dim_scaling * (proj_x - norm)

        if rf_mask is not None:
            log_phi_k = log_phi_k.masked_fill(rf_mask, MASK_MIN_VALUE)

        # [b, h, c, m, r]
        softmax_phi_k = torch.softmax(log_phi_k, dim=-2).to(rf_k.dtype)
        softmax_phi_k_v = torch.sum(softmax_phi_k * rf_v, dim=-2)
        # [b, h, c, r, m] [b, h, c, m, d] -> [b, h, c, r, d]
        # softmax_phi_k_v = torch.matmul(softmax_phi_k.transpose(-1, -2), rf_v).squeeze(-2)
        log_sum_phi_k = None
        return softmax_phi_k_v, log_sum_phi_k

    def _calculate_chunk_rfa(self, q, softmax_phi_k_v, log_sum_phi_k, weights):
        if self.random_feature_dim == 1:
            # when r = 1, the snis weights becomes 1, so this takes no effect 
            # [b, h, c, r, d] -> [b, h, c, d]
            return softmax_phi_k_v
        else:
            # [b, h, c, r, d] [b, h, 1, s, d] -> [b, h, c, r, s]
            log_phi_q = prm_projection(q.unsqueeze(-3), weights, self.config.mixedp_attn)
            # [b, h, c, r, s] [b, h, c, r, 1] -> [b, h, c, r, s]
            sniw = torch.softmax(log_phi_q + log_sum_phi_k, dim=-1).to(q.dtype)
            # [b, h, c, r, s] [b, h, c, r, d] -> [b, h, c, s, d] -> [b, h, s, c, d]
            rfa_per_chunk = torch.matmul(sniw.transpose(-1, -2), softmax_phi_k_v).transpose(-3, -2)
            return rfa_per_chunk

    def window_partition(self, x, window_size=None):
        window_size = window_size if window_size is not None else self.window_size

        gw, d = x.shape[-2:]
        leading_dims = x.shape[:-2]
        n_groups = gw // window_size
        return x.reshape(*leading_dims, n_groups, window_size, d)
    
    def window_merge(self, x, window_size=None):
        g, w, d = x.shape[-3:]
        leading_dims = x.shape[:-3]
        return x.reshape(*leading_dims, g * w, d)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cos: Optional[torch.Tensor] = None,
        sin: Optional[torch.Tensor] = None,
        multibyte_decoding: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        assert not output_attentions
        bsz, q_len, _ = hidden_states.size()

        ############################################
        # initialize past states if not provided
        ############################################
        if use_cache and past_key_value is None:
            raise ValueError
        if use_cache and multibyte_decoding:
            raise NotImplementedError("Multibyte decoding is not supported for PyTorch native implementation")
        # assert isinstance(attention_mask, tuple)
        if len(attention_mask) == 4:
            assert use_cache
            prev_causal_mask, cur_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
        elif len(attention_mask) == 3:
            assert not use_cache
            window_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
        else:
            raise NotImplementedError("Only attention-mask tuple with length 2 or 3 is supported")

        ############################################
        # compute q, k, v from hidden states
        ############################################
        # [b, h, q_len, d]
        q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        # [b, h, kv_len, d]
        k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        # [b, h, kv_len, d]
        v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        if use_cache:
            past_key_value.update_past_len(q.shape[-2], self.layer_idx)

        ############################################
        # apply rotary positional embeddings to q, k
        ############################################
        q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)

        ############################################
        # compute q, k, v stats for the local window
        ############################################
        if use_cache:
            (prev_w_q, prev_w_k, prev_w_v), (cur_w_q, cur_w_k, cur_w_v) = past_key_value.update_singletons(
                q, 
                k, 
                v, 
                self.layer_idx,
                self.window_size,
                self.singleton_update
            )
        else:
            prev_w_q = self.window_partition(q) # [b, h, w, i, d]
            prev_w_k = self.window_partition(k) # [b, h, w, j, d]
            prev_w_v = self.window_partition(v) # [b, h, w, j, d]
            # during training, we assume window_size divides seq_len so no remainders
            cur_w_q = cur_w_k = cur_w_v = None

        ############################################
        # compute q, k, v stats for chunk-level RFAs
        ############################################
        if use_cache:
            dump_q, dump_k, dump_v = past_key_value.update_chunks(q, k, v, self.layer_idx, self.chunk_size)
        else:
            dump_q, dump_k, dump_v = q, k, v

        if use_cache:
            prev_s_mask, cur_s_mask, prev_chunk_mask, cur_chunk_mask, dump_rf_mask = past_key_value.update_mask(
                prev_s_mask=prev_causal_mask,
                cur_s_mask=cur_causal_mask,
                chunk_mask=chunk_causal_mask,
                rf_mask=intra_chunk_mask,
                layer_idx=self.layer_idx,
                window_size=self.window_size,
                chunk_size=self.chunk_size,
                singleton_update=self.singleton_update
            )
        else:
            prev_s_mask = window_causal_mask # [1, 1, w, i, j]
            cur_s_mask = None
            prev_chunk_mask = self.window_partition(chunk_causal_mask)
            cur_chunk_mask = None
            dump_rf_mask = intra_chunk_mask
            if prev_s_mask.shape[-3] == 1:
                # need to expand
                prev_s_mask = prev_s_mask.expand(-1, -1, prev_chunk_mask.shape[-3], -1, -1)

        if (
            dump_q is not None and
            dump_k is not None and
            dump_v is not None
        ):
            # [b, h, c, j, d]
            rf_q = self.window_partition(dump_q, window_size=self.chunk_size)
            # [b, h, c, j, d]
            rf_k = self.window_partition(dump_k, window_size=self.chunk_size)
            # [b, h, c, j, d]
            rf_v = self.window_partition(dump_v, window_size=self.chunk_size)

            if dump_rf_mask is not None:
                rf_mask = self.window_partition(dump_rf_mask, window_size=self.chunk_size)
                rf_q = rf_q.masked_fill(rf_mask, 0.)
                rf_k = rf_k.masked_fill(rf_mask, 0.)
                rf_v = rf_v.masked_fill(rf_mask, 0.)
            else:
                rf_mask = None
        else:
            rf_q = None
            rf_k = None
            rf_v = None
            rf_mask = None


        if rf_q is not None:
            # import pdb; pdb.set_trace()
            weights, rf_k_bar = self._generate_feature_map(rf_q, rf_k, rf_v)
            softmax_phi_k_v, log_sum_phi_k = self._calculate_chunk_rfa_cache(rf_q, rf_k, rf_v, weights, rf_mask=rf_mask)
            if use_cache:
                softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.update_chunk_rfas(
                    softmax_phi_k_v, log_sum_phi_k, rf_k_bar, self.layer_idx, 1
                )
        elif use_cache:
            weights = None
            softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.get_chunk_rfas(self.layer_idx)
        else:
            weights = None
            softmax_phi_k_v = None
            log_sum_phi_k = None
            rf_k_bar = None

        if rf_k_bar is not None:
            rfa_per_chunk = self._calculate_chunk_rfa(q, softmax_phi_k_v, log_sum_phi_k, weights)
        ############################################
        # compute meta-attention weights for 
        # - group-wise RFAs and 
        # - singletons (equivalent to exact local attention)
        ############################################
        if prev_w_k is not None:
            if rf_k_bar is not None:
                num_windows = prev_w_k.shape[-3]
                # rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
                # -> [b, h, 1, c, d] -> [b, h, w, c, d]
                prev_rf_k_bar = rf_k_bar.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
                prev_rfa_per_chunk = rfa_per_chunk.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
                prev_agg_k = torch.cat([prev_w_k, prev_rf_k_bar], dim=-2)
                prev_agg_v = torch.cat([prev_w_v, prev_rfa_per_chunk], dim=-2)

                prev_attn_mask = torch.cat([prev_s_mask, prev_chunk_mask], dim=-1)
            else:
                prev_agg_k = prev_w_k
                prev_agg_v = prev_w_v
                prev_attn_mask = prev_s_mask

            prev_attn_output = attention_op(
                q=prev_w_q,
                k=prev_agg_k,
                v=prev_agg_v,
                attn_mask=prev_attn_mask,
                mixedp_attn=self.config.mixedp_attn,
                head_dim_scaling=self.head_dim_scaling
            )
            prev_attn_output = self.window_merge(prev_attn_output)

        if cur_w_k is not None:
            if rf_k_bar is not None:
                # rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
                # cur_w_k and cur_w_v also has shape [b, h, m, d]
                cur_agg_k = torch.cat([cur_w_k, rf_k_bar], dim=-2)
                cur_agg_v = torch.cat([cur_w_v, rfa_per_chunk], dim=-2)

                cur_attn_mask = torch.cat([cur_s_mask, cur_chunk_mask], dim=-1)
            else:
                cur_agg_k = cur_w_k
                cur_agg_v = cur_w_v
                cur_attn_mask = cur_s_mask

            cur_attn_output = attention_op(
                q=cur_w_q,
                k=cur_agg_k,
                v=cur_agg_v,
                attn_mask=cur_attn_mask,
                mixedp_attn=self.config.mixedp_attn,
                head_dim_scaling=self.head_dim_scaling
            )

        if prev_w_k is not None and cur_w_k is not None:
            attn_output = torch.cat([prev_attn_output, cur_attn_output], dim=-2)
        elif prev_w_k is not None:
            attn_output = prev_attn_output
        elif cur_w_k is not None:
            attn_output = cur_attn_output
        else:
            raise ValueError("There must be some bug")

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        attn_weights = None

        return attn_output, attn_weights, past_key_value