base_model: ./meta-llama_Llama-3.1-8B # optionally might have model_type or tokenizer_type model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: false strict: false datasets: - path: 2025-01_conversations_2024_2.jsonl type: chat_template chat_template: tokenizer_default field_messages: conversations message_field_role: from message_field_content: value roles: <|autheur|>: - human <|khey|>: - gpt <|sujet|>: - system dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/ dataset_prepared_path: last_run_prepared sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: JVCGPT Medium 8b v2 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 100 eval_table_size: saves_per_epoch: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> save_safetensors: true save_total_limit: 5 resume_from_checkpoint: ./outputs/checkpoint-9999 # If resume_from_checkpoint isn't set and you simply want it to start where it left off. # Be careful with this being turned on between different models. auto_resume_from_checkpoints: true