Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fla/__init__.py +110 -0
- fla/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/__pycache__/utils.cpython-311.pyc +0 -0
- fla/ops/__init__.py +45 -0
- fla/ops/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/gla/__init__.py +11 -0
- fla/ops/gla/fused_recurrent.py +113 -0
- fla/ops/gsa/__init__.py +9 -0
- fla/ops/gsa/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/gsa/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/gsa/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
- fla/ops/gsa/chunk.py +1264 -0
- fla/ops/gsa/fused_recurrent.py +564 -0
- fla/ops/gsa/naive.py +68 -0
- fla/ops/hgrn/__init__.py +9 -0
- fla/ops/hgrn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/hgrn/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/hgrn/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
- fla/ops/hgrn/fused_recurrent.py +308 -0
- fla/ops/hgrn/naive.py +63 -0
- fla/ops/lightning_attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/lightning_attn/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/lightning_attn/chunk.py +74 -0
- fla/ops/lightning_attn/fused_recurrent.py +75 -0
- fla/ops/linear_attn/__init__.py +11 -0
- fla/ops/linear_attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/fused_chunk.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/utils.cpython-311.pyc +0 -0
- fla/ops/linear_attn/fused_chunk.py +318 -0
- fla/ops/nsa/__init__.py +9 -0
- fla/ops/nsa/__pycache__/naive.cpython-311.pyc +0 -0
- fla/ops/nsa/__pycache__/parallel.cpython-311.pyc +0 -0
- fla/ops/nsa/__pycache__/utils.cpython-311.pyc +0 -0
- fla/ops/nsa/naive.py +94 -0
- fla/ops/rebased/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/rebased/parallel.py +466 -0
- fla/ops/retention/__init__.py +13 -0
- fla/ops/retention/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/retention/__pycache__/parallel.cpython-311.pyc +0 -0
- fla/ops/retention/chunk.py +72 -0
- fla/ops/retention/fused_recurrent.py +42 -0
- fla/ops/retention/naive.py +15 -0
- fla/ops/rwkv4/__init__.py +7 -0
- fla/ops/rwkv4/fused_recurrent.py +476 -0
- fla/ops/rwkv6/__init__.py +9 -0
- fla/ops/rwkv6/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/rwkv6/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/rwkv6/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
fla/__init__.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from fla.layers import (
|
4 |
+
ABCAttention,
|
5 |
+
Attention,
|
6 |
+
BasedLinearAttention,
|
7 |
+
BitAttention,
|
8 |
+
DeltaNet,
|
9 |
+
GatedDeltaNet,
|
10 |
+
GatedDeltaProduct,
|
11 |
+
GatedLinearAttention,
|
12 |
+
GatedSlotAttention,
|
13 |
+
HGRN2Attention,
|
14 |
+
HGRNAttention,
|
15 |
+
LightNetAttention,
|
16 |
+
LinearAttention,
|
17 |
+
MultiScaleRetention,
|
18 |
+
NativeSparseAttention,
|
19 |
+
ReBasedLinearAttention,
|
20 |
+
RWKV6Attention,
|
21 |
+
RWKV7Attention
|
22 |
+
)
|
23 |
+
from fla.models import (
|
24 |
+
ABCForCausalLM,
|
25 |
+
ABCModel,
|
26 |
+
BitNetForCausalLM,
|
27 |
+
BitNetModel,
|
28 |
+
DeltaNetForCausalLM,
|
29 |
+
DeltaNetModel,
|
30 |
+
GatedDeltaNetForCausalLM,
|
31 |
+
GatedDeltaNetModel,
|
32 |
+
GatedDeltaProductForCausalLM,
|
33 |
+
GatedDeltaProductModel,
|
34 |
+
GLAForCausalLM,
|
35 |
+
GLAModel,
|
36 |
+
GSAForCausalLM,
|
37 |
+
GSAModel,
|
38 |
+
HGRN2ForCausalLM,
|
39 |
+
HGRN2Model,
|
40 |
+
HGRNForCausalLM,
|
41 |
+
LightNetForCausalLM,
|
42 |
+
LightNetModel,
|
43 |
+
LinearAttentionForCausalLM,
|
44 |
+
LinearAttentionModel,
|
45 |
+
NSAForCausalLM,
|
46 |
+
NSAModel,
|
47 |
+
RetNetForCausalLM,
|
48 |
+
RetNetModel,
|
49 |
+
RWKV6ForCausalLM,
|
50 |
+
RWKV6Model,
|
51 |
+
RWKV7ForCausalLM,
|
52 |
+
RWKV7Model,
|
53 |
+
TransformerForCausalLM,
|
54 |
+
TransformerModel
|
55 |
+
)
|
56 |
+
|
57 |
+
__all__ = [
|
58 |
+
'ABCAttention',
|
59 |
+
'Attention',
|
60 |
+
'BasedLinearAttention',
|
61 |
+
'BitAttention',
|
62 |
+
'DeltaNet',
|
63 |
+
'GatedDeltaNet',
|
64 |
+
'GatedDeltaProduct',
|
65 |
+
'GatedLinearAttention',
|
66 |
+
'GatedSlotAttention',
|
67 |
+
'HGRNAttention',
|
68 |
+
'HGRN2Attention',
|
69 |
+
'LightNetAttention',
|
70 |
+
'LinearAttention',
|
71 |
+
'MultiScaleRetention',
|
72 |
+
'NativeSparseAttention',
|
73 |
+
'ReBasedLinearAttention',
|
74 |
+
'RWKV6Attention',
|
75 |
+
'RWKV7Attention',
|
76 |
+
'ABCForCausalLM',
|
77 |
+
'ABCModel',
|
78 |
+
'BitNetForCausalLM',
|
79 |
+
'BitNetModel',
|
80 |
+
'DeltaNetForCausalLM',
|
81 |
+
'DeltaNetModel',
|
82 |
+
'GatedDeltaNetForCausalLM',
|
83 |
+
'GatedDeltaNetModel',
|
84 |
+
'GatedDeltaProductForCausalLM',
|
85 |
+
'GatedDeltaProductModel',
|
86 |
+
'GLAForCausalLM',
|
87 |
+
'GLAModel',
|
88 |
+
'GSAForCausalLM',
|
89 |
+
'GSAModel',
|
90 |
+
'HGRNForCausalLM',
|
91 |
+
'HGRNModel',
|
92 |
+
'HGRN2ForCausalLM',
|
93 |
+
'HGRN2Model',
|
94 |
+
'LightNetForCausalLM',
|
95 |
+
'LightNetModel',
|
96 |
+
'LinearAttentionForCausalLM',
|
97 |
+
'LinearAttentionModel',
|
98 |
+
'NSAForCausalLM',
|
99 |
+
'NSAModel',
|
100 |
+
'RetNetForCausalLM',
|
101 |
+
'RetNetModel',
|
102 |
+
'RWKV6ForCausalLM',
|
103 |
+
'RWKV6Model',
|
104 |
+
'RWKV7ForCausalLM',
|
105 |
+
'RWKV7Model',
|
106 |
+
'TransformerForCausalLM',
|
107 |
+
'TransformerModel',
|
108 |
+
]
|
109 |
+
|
110 |
+
__version__ = '0.1.2'
|
fla/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (2.33 kB). View file
|
|
fla/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (13.8 kB). View file
|
|
fla/ops/__init__.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .abc import chunk_abc
|
4 |
+
from .attn import parallel_attn
|
5 |
+
from .based import fused_chunk_based, parallel_based
|
6 |
+
from .delta_rule import chunk_delta_rule, fused_chunk_delta_rule, fused_recurrent_delta_rule
|
7 |
+
from .forgetting_attn import parallel_forgetting_attn
|
8 |
+
from .gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
|
9 |
+
from .generalized_delta_rule import (
|
10 |
+
chunk_dplr_delta_rule,
|
11 |
+
chunk_iplr_delta_rule,
|
12 |
+
fused_recurrent_dplr_delta_rule,
|
13 |
+
fused_recurrent_iplr_delta_rule
|
14 |
+
)
|
15 |
+
from .gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
16 |
+
from .gsa import chunk_gsa, fused_recurrent_gsa
|
17 |
+
from .hgrn import fused_recurrent_hgrn
|
18 |
+
from .lightning_attn import chunk_lightning_attn, fused_recurrent_lightning_attn
|
19 |
+
from .linear_attn import chunk_linear_attn, fused_chunk_linear_attn, fused_recurrent_linear_attn
|
20 |
+
from .nsa import parallel_nsa
|
21 |
+
from .retention import chunk_retention, fused_chunk_retention, fused_recurrent_retention, parallel_retention
|
22 |
+
from .rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
|
23 |
+
from .rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7
|
24 |
+
from .simple_gla import chunk_simple_gla, fused_recurrent_simple_gla, parallel_simple_gla
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
'chunk_abc',
|
28 |
+
'parallel_attn',
|
29 |
+
'fused_chunk_based', 'parallel_based',
|
30 |
+
'chunk_delta_rule', 'fused_chunk_delta_rule', 'fused_recurrent_delta_rule',
|
31 |
+
'parallel_forgetting_attn',
|
32 |
+
'chunk_gated_delta_rule', 'fused_recurrent_gated_delta_rule',
|
33 |
+
'chunk_dplr_delta_rule', 'chunk_iplr_delta_rule',
|
34 |
+
'fused_recurrent_dplr_delta_rule', 'fused_recurrent_iplr_delta_rule',
|
35 |
+
'chunk_gla', 'fused_chunk_gla', 'fused_recurrent_gla',
|
36 |
+
'chunk_gsa', 'fused_recurrent_gsa',
|
37 |
+
'fused_recurrent_hgrn',
|
38 |
+
'chunk_lightning_attn', 'fused_recurrent_lightning_attn',
|
39 |
+
'chunk_linear_attn', 'fused_chunk_linear_attn', 'fused_recurrent_linear_attn',
|
40 |
+
'parallel_nsa',
|
41 |
+
'chunk_retention', 'fused_chunk_retention', 'fused_recurrent_retention', 'parallel_retention',
|
42 |
+
'chunk_rwkv6', 'fused_recurrent_rwkv6',
|
43 |
+
'chunk_rwkv7', 'fused_recurrent_rwkv7',
|
44 |
+
'chunk_simple_gla', 'fused_recurrent_simple_gla', 'parallel_simple_gla',
|
45 |
+
]
|
fla/ops/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (2.29 kB). View file
|
|
fla/ops/generalized_delta_rule/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (448 Bytes). View file
|
|
fla/ops/gla/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_gla
|
4 |
+
from .fused_chunk import fused_chunk_gla
|
5 |
+
from .fused_recurrent import fused_recurrent_gla
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'chunk_gla',
|
9 |
+
'fused_chunk_gla',
|
10 |
+
'fused_recurrent_gla'
|
11 |
+
]
|
fla/ops/gla/fused_recurrent.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from fla.ops.common.fused_recurrent import fused_recurrent
|
9 |
+
|
10 |
+
|
11 |
+
def fused_recurrent_gla(
|
12 |
+
q: torch.Tensor,
|
13 |
+
k: torch.Tensor,
|
14 |
+
v: torch.Tensor,
|
15 |
+
gk: Optional[torch.Tensor] = None,
|
16 |
+
gv: Optional[torch.Tensor] = None,
|
17 |
+
scale: Optional[int] = None,
|
18 |
+
initial_state: Optional[torch.Tensor] = None,
|
19 |
+
output_final_state: bool = False,
|
20 |
+
reverse: bool = False,
|
21 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
22 |
+
head_first: bool = True
|
23 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
24 |
+
r"""
|
25 |
+
Args:
|
26 |
+
q (torch.Tensor):
|
27 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
28 |
+
k (torch.Tensor):
|
29 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
30 |
+
v (torch.Tensor):
|
31 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
32 |
+
gk (torch.Tensor):
|
33 |
+
Forget gates of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` applied to keys.
|
34 |
+
gv (torch.Tensor):
|
35 |
+
Forget gates of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` applied to values.
|
36 |
+
scale (Optional[int]):
|
37 |
+
Scale factor for the attention scores.
|
38 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
39 |
+
initial_state (Optional[torch.Tensor]):
|
40 |
+
Initial state of shape `[N, H, K, V]` for `N` input sequences.
|
41 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
42 |
+
Default: `None`.
|
43 |
+
output_final_state (Optional[bool]):
|
44 |
+
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
|
45 |
+
reverse (Optional[bool]):
|
46 |
+
If `True`, process the state passing in reverse order. Default: `False`.
|
47 |
+
cu_seqlens (torch.LongTensor):
|
48 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
49 |
+
consistent with the FlashAttention API.
|
50 |
+
head_first (Optional[bool]):
|
51 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
52 |
+
Default: `True`.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
o (torch.Tensor):
|
56 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
57 |
+
final_state (torch.Tensor):
|
58 |
+
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
|
59 |
+
|
60 |
+
Examples::
|
61 |
+
>>> import torch
|
62 |
+
>>> import torch.nn.functional as F
|
63 |
+
>>> from einops import rearrange
|
64 |
+
>>> from fla.ops.gla import fused_recurrent_gla
|
65 |
+
# inputs with equal lengths
|
66 |
+
>>> B, T, H, K, V = 4, 2048, 4, 512, 512
|
67 |
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
68 |
+
>>> k = torch.randn(B, T, H, K, device='cuda')
|
69 |
+
>>> v = torch.randn(B, T, H, V, device='cuda')
|
70 |
+
>>> g = F.logsigmoid(torch.randn(B, T, H, K, device='cuda'))
|
71 |
+
>>> h0 = torch.randn(B, H, K, V, device='cuda')
|
72 |
+
>>> o, ht = fused_recurrent_gla(q, k, v, g,
|
73 |
+
initial_state=h0,
|
74 |
+
output_final_state=True,
|
75 |
+
head_first=False)
|
76 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
77 |
+
>>> q, k, v, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, g))
|
78 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
79 |
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
80 |
+
>>> o_var, ht_var = fused_recurrent_gla(q, k, v, g,
|
81 |
+
initial_state=h0,
|
82 |
+
output_final_state=True,
|
83 |
+
cu_seqlens=cu_seqlens,
|
84 |
+
head_first=False)
|
85 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
86 |
+
>>> assert ht.allclose(ht_var)
|
87 |
+
"""
|
88 |
+
if cu_seqlens is not None:
|
89 |
+
if q.shape[0] != 1:
|
90 |
+
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
91 |
+
f"Please flatten variable-length inputs before processing.")
|
92 |
+
if head_first:
|
93 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
94 |
+
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
|
95 |
+
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
|
96 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
|
97 |
+
if scale is None:
|
98 |
+
scale = k.shape[-1] ** -0.5
|
99 |
+
o, final_state = fused_recurrent(
|
100 |
+
q=q,
|
101 |
+
k=k,
|
102 |
+
v=v,
|
103 |
+
g=None,
|
104 |
+
gk=gk,
|
105 |
+
gv=gv,
|
106 |
+
scale=scale,
|
107 |
+
initial_state=initial_state,
|
108 |
+
output_final_state=output_final_state,
|
109 |
+
reverse=reverse,
|
110 |
+
cu_seqlens=cu_seqlens,
|
111 |
+
head_first=head_first
|
112 |
+
)
|
113 |
+
return o, final_state
|
fla/ops/gsa/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_gsa
|
4 |
+
from .fused_recurrent import fused_recurrent_gsa
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'chunk_gsa',
|
8 |
+
'fused_recurrent_gsa'
|
9 |
+
]
|
fla/ops/gsa/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (319 Bytes). View file
|
|
fla/ops/gsa/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (70.3 kB). View file
|
|
fla/ops/gsa/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (26.6 kB). View file
|
|
fla/ops/gsa/chunk.py
ADDED
@@ -0,0 +1,1264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from einops import reduce
|
10 |
+
|
11 |
+
from fla.ops.common.chunk_h import chunk_bwd_dh, chunk_fwd_h
|
12 |
+
from fla.ops.gla.chunk import chunk_gla_bwd, chunk_gla_fwd
|
13 |
+
from fla.ops.utils import chunk_local_cumsum, softmax_bwd, softmax_fwd
|
14 |
+
from fla.ops.utils.op import exp, safe_exp
|
15 |
+
from fla.utils import input_guard
|
16 |
+
|
17 |
+
|
18 |
+
@triton.heuristics({
|
19 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
20 |
+
})
|
21 |
+
@triton.autotune(
|
22 |
+
configs=[
|
23 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
24 |
+
for BK in [32, 64]
|
25 |
+
for BV in [32, 64]
|
26 |
+
for num_warps in [2, 4, 8]
|
27 |
+
for num_stages in [2, 3, 4]
|
28 |
+
],
|
29 |
+
key=['BT']
|
30 |
+
)
|
31 |
+
@triton.jit(do_not_specialize=['T'])
|
32 |
+
def chunk_gsa_fwd_k_kernel_inter(
|
33 |
+
q,
|
34 |
+
k,
|
35 |
+
h,
|
36 |
+
g,
|
37 |
+
o,
|
38 |
+
A,
|
39 |
+
offsets,
|
40 |
+
indices,
|
41 |
+
scale,
|
42 |
+
T,
|
43 |
+
HQ: tl.constexpr,
|
44 |
+
H: tl.constexpr,
|
45 |
+
K: tl.constexpr,
|
46 |
+
V: tl.constexpr,
|
47 |
+
BT: tl.constexpr,
|
48 |
+
BK: tl.constexpr,
|
49 |
+
BV: tl.constexpr,
|
50 |
+
NG: tl.constexpr,
|
51 |
+
USE_OFFSETS: tl.constexpr,
|
52 |
+
HEAD_FIRST: tl.constexpr
|
53 |
+
):
|
54 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
55 |
+
i_bg = i_bh // NG
|
56 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
57 |
+
i_h = i_hq // NG
|
58 |
+
if USE_OFFSETS:
|
59 |
+
i_tg = i_t
|
60 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
61 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
62 |
+
T = eos - bos
|
63 |
+
NT = tl.cdiv(T, BT)
|
64 |
+
else:
|
65 |
+
NT = tl.cdiv(T, BT)
|
66 |
+
i_tg = i_b * NT + i_t
|
67 |
+
bos, eos = i_b * T, i_b * T + T
|
68 |
+
|
69 |
+
o_i = tl.arange(0, BT)
|
70 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
71 |
+
|
72 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
73 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
74 |
+
for i_k in range(tl.cdiv(K, BK)):
|
75 |
+
if HEAD_FIRST:
|
76 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
77 |
+
p_k = tl.make_block_ptr(k + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
78 |
+
p_h = tl.make_block_ptr(h + (i_bg * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
79 |
+
else:
|
80 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
81 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
82 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
83 |
+
|
84 |
+
# [BT, BK]
|
85 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
86 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
87 |
+
# [BK, BT]
|
88 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
89 |
+
# [BK, BV]
|
90 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
91 |
+
# [BT, BV]
|
92 |
+
b_o += tl.dot(b_q, b_h)
|
93 |
+
# [BT, BT]
|
94 |
+
b_A += tl.dot(b_q, b_k)
|
95 |
+
if HEAD_FIRST:
|
96 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
97 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
98 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
99 |
+
else:
|
100 |
+
p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
101 |
+
p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
102 |
+
p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
103 |
+
# [BT, BV]
|
104 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
105 |
+
b_o = b_o * exp(b_g)
|
106 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
107 |
+
|
108 |
+
# [BT, BT]
|
109 |
+
b_A = tl.where(m_s, b_A, 0.)
|
110 |
+
if i_v == 0:
|
111 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
112 |
+
|
113 |
+
|
114 |
+
@triton.heuristics({
|
115 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
116 |
+
})
|
117 |
+
@triton.jit(do_not_specialize=['T'])
|
118 |
+
def chunk_gsa_fwd_k_kernel_intra(
|
119 |
+
v,
|
120 |
+
g,
|
121 |
+
o,
|
122 |
+
A,
|
123 |
+
offsets,
|
124 |
+
indices,
|
125 |
+
T,
|
126 |
+
HQ: tl.constexpr,
|
127 |
+
H: tl.constexpr,
|
128 |
+
V: tl.constexpr,
|
129 |
+
BT: tl.constexpr,
|
130 |
+
BC: tl.constexpr,
|
131 |
+
BV: tl.constexpr,
|
132 |
+
NC: tl.constexpr,
|
133 |
+
NG: tl.constexpr,
|
134 |
+
USE_OFFSETS: tl.constexpr,
|
135 |
+
HEAD_FIRST: tl.constexpr
|
136 |
+
):
|
137 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
138 |
+
i_bg = i_bh // NG
|
139 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
140 |
+
i_h = i_hq // NG
|
141 |
+
i_t, i_i = i_c // NC, i_c % NC
|
142 |
+
if USE_OFFSETS:
|
143 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
144 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
145 |
+
T = eos - bos
|
146 |
+
else:
|
147 |
+
bos, eos = i_b * T, i_b * T + T
|
148 |
+
|
149 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
150 |
+
m_v = o_v < V
|
151 |
+
|
152 |
+
if i_t * BT + i_i * BC > T:
|
153 |
+
return
|
154 |
+
|
155 |
+
if HEAD_FIRST:
|
156 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
157 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + min(i_t * BT + i_i * BC, T) * V + o_v, BV), BV)
|
158 |
+
else:
|
159 |
+
p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
160 |
+
p_gn = g + (bos + min(i_t * BT + i_i * BC, T)) * H*V + i_h * V + o_v
|
161 |
+
# [BV,]
|
162 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
163 |
+
# [BC, BV]
|
164 |
+
b_o = tl.zeros([BC, BV], dtype=tl.float32)
|
165 |
+
for i_j in range(0, i_i):
|
166 |
+
if HEAD_FIRST:
|
167 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
168 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
169 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
170 |
+
else:
|
171 |
+
p_A = tl.make_block_ptr(A + (bos*HQ+i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t*BT+i_i*BC, i_j * BC), (BC, BC), (1, 0))
|
172 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
173 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
174 |
+
# [BC, BV]
|
175 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
176 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
177 |
+
b_vg = (b_v * exp(b_gn[None, :] - b_gv)).to(b_v.dtype)
|
178 |
+
# [BC, BC]
|
179 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
180 |
+
b_o += tl.dot(b_A, b_vg)
|
181 |
+
# [BC, BV]
|
182 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
183 |
+
b_o *= exp(b_g - b_gn[None, :])
|
184 |
+
|
185 |
+
o_i = tl.arange(0, BC)
|
186 |
+
if HEAD_FIRST:
|
187 |
+
o_A = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC
|
188 |
+
else:
|
189 |
+
o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * HQ*BT + i_hq * BT + i_i * BC
|
190 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
191 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
192 |
+
if HEAD_FIRST:
|
193 |
+
p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T*V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV)
|
194 |
+
p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV)
|
195 |
+
else:
|
196 |
+
p_v = v + (bos + i_t * BT + i_i * BC + j) * H*V + i_h * V + o_v
|
197 |
+
p_gv = g + (bos + i_t * BT + i_i * BC + j) * H*V + i_h * V + o_v
|
198 |
+
# [BC,]
|
199 |
+
b_A = tl.load(A + o_A + j, mask=m_A, other=0)
|
200 |
+
# [BV,]
|
201 |
+
b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32)
|
202 |
+
b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32)
|
203 |
+
# [BC, BV]
|
204 |
+
b_vg = b_v[None, :] * exp(b_g - b_gv[None, :])
|
205 |
+
# avoid 0 * inf = inf
|
206 |
+
b_o += tl.where(o_i[:, None] >= j, b_A[:, None] * b_vg, 0.)
|
207 |
+
if HEAD_FIRST:
|
208 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
209 |
+
else:
|
210 |
+
p_o = tl.make_block_ptr(o + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
211 |
+
b_o += tl.load(p_o, boundary_check=(0, 1))
|
212 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
213 |
+
|
214 |
+
|
215 |
+
@triton.heuristics({
|
216 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
217 |
+
})
|
218 |
+
@triton.autotune(
|
219 |
+
configs=[
|
220 |
+
triton.Config({}, num_warps=num_warps)
|
221 |
+
for num_warps in [2, 4, 8]
|
222 |
+
],
|
223 |
+
key=["BT"]
|
224 |
+
)
|
225 |
+
@triton.jit(do_not_specialize=['T'])
|
226 |
+
def chunk_gsa_bwd_k_kernel_dA(
|
227 |
+
v,
|
228 |
+
g,
|
229 |
+
do,
|
230 |
+
dA,
|
231 |
+
indices,
|
232 |
+
offsets,
|
233 |
+
scale,
|
234 |
+
T,
|
235 |
+
B: tl.constexpr,
|
236 |
+
HQ: tl.constexpr,
|
237 |
+
H: tl.constexpr,
|
238 |
+
V: tl.constexpr,
|
239 |
+
BT: tl.constexpr,
|
240 |
+
BC: tl.constexpr,
|
241 |
+
BV: tl.constexpr,
|
242 |
+
NC: tl.constexpr,
|
243 |
+
NG: tl.constexpr,
|
244 |
+
USE_OFFSETS: tl.constexpr,
|
245 |
+
HEAD_FIRST: tl.constexpr
|
246 |
+
):
|
247 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
248 |
+
i_bg = i_bh // NG
|
249 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
250 |
+
i_h = i_hq // NG
|
251 |
+
i_t, i_i, i_j = i_c // (NC * NC), (i_c % (NC * NC)) // NC, (i_c % (NC * NC)) % NC
|
252 |
+
if USE_OFFSETS:
|
253 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
254 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
255 |
+
all = T
|
256 |
+
T = eos - bos
|
257 |
+
else:
|
258 |
+
bos, eos = i_b * T, i_b * T + T
|
259 |
+
all = B * T
|
260 |
+
|
261 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
262 |
+
m_v = o_v < V
|
263 |
+
|
264 |
+
if i_t * BT + i_i * BC > T:
|
265 |
+
return
|
266 |
+
|
267 |
+
if HEAD_FIRST:
|
268 |
+
p_dA = tl.make_block_ptr(dA+(i_v*B*H+i_bh)*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
269 |
+
else:
|
270 |
+
p_dA = tl.make_block_ptr(dA+((i_v*all+bos)*HQ+i_hq)*BT, (T, BT), (HQ*BT, 1), (i_t*BT+i_i*BC, i_j*BC), (BC, BC), (1, 0))
|
271 |
+
|
272 |
+
# [BC, BC]
|
273 |
+
b_dA = tl.zeros([BC, BC], dtype=tl.float32)
|
274 |
+
if i_i > i_j:
|
275 |
+
if HEAD_FIRST:
|
276 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1))
|
277 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1))
|
278 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
279 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
280 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
281 |
+
else:
|
282 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t*BT + i_j*BC), (BV, BC), (0, 1))
|
283 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t*BT + i_j*BC), (BV, BC), (0, 1))
|
284 |
+
p_gn = g + (bos + i_t*BT + i_i*BC) * H*V + i_h * V + o_v
|
285 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
286 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
287 |
+
# [BV,]
|
288 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0.)
|
289 |
+
# [BC, BV]
|
290 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
291 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
292 |
+
b_do = (b_do * exp(b_g - b_gn[None, :]) * scale).to(b_do.dtype)
|
293 |
+
# [BV, BC]
|
294 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
295 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
296 |
+
b_vg = (b_v * exp(b_gn[:, None] - b_gv)).to(b_v.dtype)
|
297 |
+
# [BC, BC]
|
298 |
+
b_dA = tl.dot(b_do, b_vg)
|
299 |
+
elif i_i == i_j:
|
300 |
+
if HEAD_FIRST:
|
301 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
302 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
303 |
+
p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T*V + (i_t * BT + i_j * BC) * V + o_v, BV), BV)
|
304 |
+
p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_j * BC) * V + o_v, BV), BV)
|
305 |
+
else:
|
306 |
+
p_g = tl.make_block_ptr(g + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
307 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
308 |
+
p_v = v + (bos + i_t*BT + i_j*BC) * H*V + i_h * V + o_v
|
309 |
+
p_gv = g + (bos + i_t*BT + i_j*BC) * H*V + i_h * V + o_v
|
310 |
+
# [BC, BV]
|
311 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
312 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)) * scale
|
313 |
+
m_v = o_v < V
|
314 |
+
|
315 |
+
o_i = tl.arange(0, BC)
|
316 |
+
# [BC, BC]
|
317 |
+
m_dA = o_i[:, None] >= o_i[None, :]
|
318 |
+
for j in range(0, min(BC, T - i_t * BT - i_j * BC)):
|
319 |
+
# [BV,]
|
320 |
+
b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32)
|
321 |
+
b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32)
|
322 |
+
# [BC,]
|
323 |
+
b_dAj = tl.sum(b_do * b_v[None, :] * exp(b_g - b_gv[None, :]), 1)
|
324 |
+
b_dA = tl.where((o_i == j)[None, :], b_dAj[:, None], b_dA)
|
325 |
+
|
326 |
+
p_v += (1 if HEAD_FIRST else H) * V
|
327 |
+
p_gv += (1 if HEAD_FIRST else H) * V
|
328 |
+
b_dA = tl.where(m_dA, b_dA, 0.)
|
329 |
+
tl.store(p_dA, b_dA.to(dA.dtype.element_ty), boundary_check=(0, 1))
|
330 |
+
|
331 |
+
|
332 |
+
@triton.heuristics({
|
333 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
334 |
+
})
|
335 |
+
@triton.autotune(
|
336 |
+
configs=[
|
337 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
338 |
+
for num_warps in [2, 4]
|
339 |
+
for num_stages in [2, 3, 4]
|
340 |
+
],
|
341 |
+
key=['BT']
|
342 |
+
)
|
343 |
+
@triton.jit(do_not_specialize=['T'])
|
344 |
+
def chunk_gsa_bwd_k_kernel_dqkvg(
|
345 |
+
q,
|
346 |
+
k,
|
347 |
+
v,
|
348 |
+
h,
|
349 |
+
g,
|
350 |
+
A,
|
351 |
+
do,
|
352 |
+
dh,
|
353 |
+
dq,
|
354 |
+
dk,
|
355 |
+
dv,
|
356 |
+
dg,
|
357 |
+
dgv,
|
358 |
+
dA,
|
359 |
+
offsets,
|
360 |
+
indices,
|
361 |
+
scale,
|
362 |
+
T,
|
363 |
+
B: tl.constexpr,
|
364 |
+
HQ: tl.constexpr,
|
365 |
+
H: tl.constexpr,
|
366 |
+
K: tl.constexpr,
|
367 |
+
V: tl.constexpr,
|
368 |
+
BT: tl.constexpr,
|
369 |
+
BK: tl.constexpr,
|
370 |
+
BV: tl.constexpr,
|
371 |
+
NG: tl.constexpr,
|
372 |
+
USE_OFFSETS: tl.constexpr,
|
373 |
+
HEAD_FIRST: tl.constexpr
|
374 |
+
):
|
375 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
376 |
+
i_bg = i_bh // NG
|
377 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
378 |
+
i_h = i_hq // NG
|
379 |
+
if USE_OFFSETS:
|
380 |
+
i_tg = i_t
|
381 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
382 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
383 |
+
all = T
|
384 |
+
T = eos - bos
|
385 |
+
NT = tl.cdiv(T, BT)
|
386 |
+
else:
|
387 |
+
NT = tl.cdiv(T, BT)
|
388 |
+
i_tg = i_b * NT + i_t
|
389 |
+
bos, eos = i_b * T, i_b * T + T
|
390 |
+
all = B * T
|
391 |
+
|
392 |
+
o_i = tl.arange(0, BT)
|
393 |
+
o_t = min(i_t * BT + BT, T)
|
394 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
395 |
+
|
396 |
+
if HEAD_FIRST:
|
397 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
398 |
+
p_k = tl.make_block_ptr(k + i_bg * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
399 |
+
p_A = tl.make_block_ptr(A + (i_k*B*H+i_bh) * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
400 |
+
else:
|
401 |
+
p_q = tl.make_block_ptr(q + (bos*HQ+i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
402 |
+
p_k = tl.make_block_ptr(k + (bos*H+i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
403 |
+
p_A = tl.make_block_ptr(A + ((i_k*all+bos)*HQ+i_hq)*BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
404 |
+
|
405 |
+
# [BT, BK]
|
406 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
407 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
408 |
+
# [BT, BT]
|
409 |
+
b_A = tl.dot((b_q * scale).to(b_q.dtype), tl.trans(b_k))
|
410 |
+
b_A = tl.where(m_s, b_A, 0.)
|
411 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
412 |
+
|
413 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
414 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
415 |
+
for i_v in range(tl.cdiv(V, BV)):
|
416 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
417 |
+
if HEAD_FIRST:
|
418 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
419 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
420 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (o_t - 1) * V + o_v, BV), BV)
|
421 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
422 |
+
p_dv = tl.make_block_ptr(dv + (i_k*B*H+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
423 |
+
p_dg = tl.make_block_ptr(dg + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
424 |
+
p_dgv = tl.make_block_ptr(dgv + (i_k*B*H+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
425 |
+
p_h = tl.make_block_ptr(h + i_bg * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
426 |
+
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
427 |
+
else:
|
428 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
429 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
430 |
+
p_gn = g + (bos + o_t - 1) * H*V + i_h * V + o_v
|
431 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
432 |
+
p_dv = tl.make_block_ptr(dv + ((i_k*all+bos)*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
433 |
+
p_dg = tl.make_block_ptr(dg + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
434 |
+
p_dgv = tl.make_block_ptr(dgv+((i_k*all+bos)*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
435 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
436 |
+
p_dh = tl.make_block_ptr(dh + (i_tg * HQ + i_hq) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
437 |
+
m_v = o_v < V
|
438 |
+
|
439 |
+
# [BV,]
|
440 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
441 |
+
# [BT, BV]
|
442 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
443 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
444 |
+
b_gv = exp(b_gn[None, :] - b_g)
|
445 |
+
# [BV, BK]
|
446 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
447 |
+
# [BT, BV]
|
448 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
449 |
+
b_do = (b_do * exp(b_g) * scale).to(b_do.dtype)
|
450 |
+
# [BK, BV]
|
451 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
452 |
+
# [BV]
|
453 |
+
b_dg = tl.sum(tl.trans(b_h) * b_dh, 0) * exp(b_gn)
|
454 |
+
|
455 |
+
b_dh = b_dh.to(b_k.dtype)
|
456 |
+
# [BT, BK]
|
457 |
+
b_dq += tl.dot(b_do, b_h.to(b_k.dtype))
|
458 |
+
b_dk += tl.dot((b_v * b_gv).to(b_v.dtype), tl.trans(b_dh))
|
459 |
+
# [BT, BV]
|
460 |
+
b_dv = tl.dot(b_k, b_dh) * b_gv
|
461 |
+
# [BV]
|
462 |
+
b_dg += tl.sum(b_dv * b_v, 0)
|
463 |
+
|
464 |
+
if i_k == 0:
|
465 |
+
b_dgv = tl.load(p_dg, boundary_check=(0, 1)) + b_dg[None, :]
|
466 |
+
else:
|
467 |
+
b_dgv = tl.zeros([BT, BV], dtype=tl.float32) + b_dg[None, :]
|
468 |
+
|
469 |
+
tl.store(p_dgv, b_dgv.to(p_dgv.dtype.element_ty), boundary_check=(0, 1))
|
470 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
471 |
+
if HEAD_FIRST:
|
472 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (T, BT, ), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
473 |
+
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
474 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
475 |
+
else:
|
476 |
+
p_dA = tl.make_block_ptr(dA + (bos*HQ + i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
477 |
+
p_dq = tl.make_block_ptr(dq + (bos*HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
478 |
+
p_dk = tl.make_block_ptr(dk + (bos*HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
479 |
+
# [BT, BT]
|
480 |
+
b_dA = tl.load(p_dA, boundary_check=(0, 1))
|
481 |
+
# [BT, BK]
|
482 |
+
b_dq += tl.dot(b_dA, b_k)
|
483 |
+
b_dk += tl.dot(tl.trans(b_dA).to(b_k.dtype), b_q)
|
484 |
+
|
485 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
486 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
487 |
+
|
488 |
+
|
489 |
+
@triton.heuristics({
|
490 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
491 |
+
})
|
492 |
+
@triton.jit(do_not_specialize=['T'])
|
493 |
+
def chunk_gsa_bwd_k_kernel_intra_dvg(
|
494 |
+
v,
|
495 |
+
g,
|
496 |
+
o,
|
497 |
+
A,
|
498 |
+
do,
|
499 |
+
dv,
|
500 |
+
dg,
|
501 |
+
offsets,
|
502 |
+
indices,
|
503 |
+
T,
|
504 |
+
HQ: tl.constexpr,
|
505 |
+
H: tl.constexpr,
|
506 |
+
V: tl.constexpr,
|
507 |
+
BT: tl.constexpr,
|
508 |
+
BC: tl.constexpr,
|
509 |
+
BV: tl.constexpr,
|
510 |
+
NC: tl.constexpr,
|
511 |
+
NG: tl.constexpr,
|
512 |
+
USE_OFFSETS: tl.constexpr,
|
513 |
+
HEAD_FIRST: tl.constexpr
|
514 |
+
):
|
515 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
516 |
+
i_bg = i_bh // NG
|
517 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
518 |
+
i_h = i_hq // NG
|
519 |
+
i_t, i_i = i_c // NC, i_c % NC
|
520 |
+
if USE_OFFSETS:
|
521 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
522 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
523 |
+
T = eos - bos
|
524 |
+
else:
|
525 |
+
bos, eos = i_b * T, i_b * T + T
|
526 |
+
|
527 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
528 |
+
m_v = o_v < V
|
529 |
+
|
530 |
+
if i_t * BT + i_i * BC > T:
|
531 |
+
return
|
532 |
+
|
533 |
+
if HEAD_FIRST:
|
534 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
535 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (min(i_t * BT + i_i * BC + BC, T) - 1) * V + o_v, BV), BV)
|
536 |
+
else:
|
537 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
538 |
+
p_gn = g + (bos + min(i_t * BT + i_i * BC + BC, T)-1)*H*V + i_h*V + o_v
|
539 |
+
# [BV,]
|
540 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
541 |
+
# [BC, BV]
|
542 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
543 |
+
b_dv = tl.zeros([BC, BV], dtype=tl.float32)
|
544 |
+
for i_j in range(i_i + 1, NC):
|
545 |
+
if HEAD_FIRST:
|
546 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
547 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (BT, T), (1, BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
|
548 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
549 |
+
else:
|
550 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
551 |
+
p_A = tl.make_block_ptr(A + (bos*HQ+i_hq) * BT, (BT, T), (1, HQ*BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
552 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_j*BC, i_v*BV), (BC, BV), (1, 0))
|
553 |
+
# [BC, BV]
|
554 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
555 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)) * safe_exp(b_g - b_gn[None, :])
|
556 |
+
# [BC, BC]
|
557 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
558 |
+
# [BC, BV]
|
559 |
+
b_dv += tl.dot(b_A, b_do.to(b_A.dtype))
|
560 |
+
b_dv *= exp(b_gn[None, :] - b_gv)
|
561 |
+
|
562 |
+
o_i = tl.arange(0, BC)
|
563 |
+
o_c = i_i * BC + tl.arange(0, BC)
|
564 |
+
|
565 |
+
if HEAD_FIRST:
|
566 |
+
p_g = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
567 |
+
p_A = tl.max_contiguous(tl.multiple_of(A + i_bh * T*BT + (i_t * BT + i_i * BC) * BT + o_c, BC), BC)
|
568 |
+
p_do = tl.max_contiguous(tl.multiple_of(do + i_bh * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
569 |
+
else:
|
570 |
+
p_g = g + (bos + i_t * BT + i_i * BC) * H*V + i_h * V + o_v
|
571 |
+
p_A = A + (bos + i_t*BT + i_i*BC) * HQ*BT + i_hq * BT + o_c
|
572 |
+
p_do = do + (bos + i_t*BT + i_i*BC) * HQ*V + i_hq * V + o_v
|
573 |
+
|
574 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
575 |
+
# [BC,]
|
576 |
+
b_A = tl.load(p_A)
|
577 |
+
# [BV,]
|
578 |
+
b_g = tl.load(p_g, mask=m_v, other=0)
|
579 |
+
b_do = tl.load(p_do, mask=m_v, other=0)
|
580 |
+
# [BC, BV]
|
581 |
+
m_i = o_i[:, None] <= j
|
582 |
+
b_dv += tl.where(m_i, exp(b_g[None, :] - b_gv) * b_A[:, None] * b_do[None, :], 0.)
|
583 |
+
|
584 |
+
p_g += (1 if HEAD_FIRST else H) * V
|
585 |
+
p_A += (1 if HEAD_FIRST else HQ) * BT
|
586 |
+
p_do += (1 if HEAD_FIRST else HQ) * V
|
587 |
+
if HEAD_FIRST:
|
588 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
589 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
590 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
591 |
+
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
592 |
+
p_dg = tl.make_block_ptr(dg + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
593 |
+
else:
|
594 |
+
p_o = tl.make_block_ptr(o + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
595 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
596 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
597 |
+
p_dv = tl.make_block_ptr(dv + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
598 |
+
p_dg = tl.make_block_ptr(dg + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
599 |
+
|
600 |
+
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
|
601 |
+
b_v = tl.load(p_v, boundary_check=(0, 1)).to(tl.float32)
|
602 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(tl.float32)
|
603 |
+
b_dv = b_dv + tl.load(p_dv, boundary_check=(0, 1)).to(tl.float32)
|
604 |
+
b_dg = b_o * b_do - b_v * b_dv
|
605 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
606 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
|
607 |
+
|
608 |
+
|
609 |
+
def chunk_gsa_fwd_v(
|
610 |
+
q: torch.Tensor,
|
611 |
+
k: torch.Tensor,
|
612 |
+
v: torch.Tensor,
|
613 |
+
g: torch.Tensor,
|
614 |
+
scale: float = 1.,
|
615 |
+
initial_state: Optional[torch.Tensor] = None,
|
616 |
+
output_final_state: bool = False,
|
617 |
+
offsets: Optional[torch.LongTensor] = None,
|
618 |
+
indices: Optional[torch.LongTensor] = None,
|
619 |
+
head_first: bool = True,
|
620 |
+
chunk_size: int = 64
|
621 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
622 |
+
_, A, h, ht, o = chunk_gla_fwd(
|
623 |
+
q=q,
|
624 |
+
k=k,
|
625 |
+
v=v,
|
626 |
+
g=None,
|
627 |
+
g_cumsum=g,
|
628 |
+
scale=scale,
|
629 |
+
initial_state=initial_state,
|
630 |
+
output_final_state=output_final_state,
|
631 |
+
offsets=offsets,
|
632 |
+
indices=indices,
|
633 |
+
head_first=head_first,
|
634 |
+
chunk_size=chunk_size
|
635 |
+
)
|
636 |
+
return A, h, ht, o
|
637 |
+
|
638 |
+
|
639 |
+
def chunk_gsa_fwd_k(
|
640 |
+
q: torch.Tensor,
|
641 |
+
k: torch.Tensor,
|
642 |
+
v: torch.Tensor,
|
643 |
+
g: torch.Tensor,
|
644 |
+
h0: Optional[torch.Tensor] = None,
|
645 |
+
output_final_state: bool = False,
|
646 |
+
scale: float = 1.,
|
647 |
+
offsets: Optional[torch.LongTensor] = None,
|
648 |
+
indices: Optional[torch.LongTensor] = None,
|
649 |
+
head_first: bool = True,
|
650 |
+
chunk_size: int = 64
|
651 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
652 |
+
if head_first:
|
653 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
654 |
+
else:
|
655 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
656 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
657 |
+
BC = min(16, BT)
|
658 |
+
BV = min(64, triton.next_power_of_2(V))
|
659 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
660 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
661 |
+
NC = triton.cdiv(BT, BC)
|
662 |
+
NG = HQ // H
|
663 |
+
|
664 |
+
h, ht = chunk_fwd_h(
|
665 |
+
k=k,
|
666 |
+
v=v,
|
667 |
+
g=None,
|
668 |
+
gk=None,
|
669 |
+
gv=g,
|
670 |
+
h0=h0,
|
671 |
+
output_final_state=output_final_state,
|
672 |
+
offsets=offsets,
|
673 |
+
head_first=head_first,
|
674 |
+
chunk_size=BT,
|
675 |
+
states_in_fp32=False
|
676 |
+
)
|
677 |
+
o = v.new_empty(B, *((HQ, T) if head_first else (T, HQ)), V)
|
678 |
+
A = q.new_empty(B, *((HQ, T) if head_first else (T, HQ)), BT)
|
679 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT, B * HQ)
|
680 |
+
chunk_gsa_fwd_k_kernel_inter[grid](
|
681 |
+
q,
|
682 |
+
k,
|
683 |
+
h,
|
684 |
+
g,
|
685 |
+
o,
|
686 |
+
A,
|
687 |
+
offsets=offsets,
|
688 |
+
indices=indices,
|
689 |
+
scale=scale,
|
690 |
+
T=T,
|
691 |
+
HQ=HQ,
|
692 |
+
H=H,
|
693 |
+
K=K,
|
694 |
+
V=V,
|
695 |
+
BT=BT,
|
696 |
+
NG=NG,
|
697 |
+
HEAD_FIRST=head_first
|
698 |
+
)
|
699 |
+
|
700 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT * NC, B * HQ)
|
701 |
+
chunk_gsa_fwd_k_kernel_intra[grid](
|
702 |
+
v,
|
703 |
+
g,
|
704 |
+
o,
|
705 |
+
A,
|
706 |
+
offsets=offsets,
|
707 |
+
indices=indices,
|
708 |
+
T=T,
|
709 |
+
HQ=HQ,
|
710 |
+
H=H,
|
711 |
+
V=V,
|
712 |
+
BT=BT,
|
713 |
+
BC=BC,
|
714 |
+
BV=BV,
|
715 |
+
NC=NC,
|
716 |
+
NG=NG,
|
717 |
+
HEAD_FIRST=head_first,
|
718 |
+
num_warps=4,
|
719 |
+
num_stages=2
|
720 |
+
)
|
721 |
+
return A, h, ht, o
|
722 |
+
|
723 |
+
|
724 |
+
def chunk_gsa_bwd_v(
|
725 |
+
q: torch.Tensor,
|
726 |
+
k: torch.Tensor,
|
727 |
+
v: torch.Tensor,
|
728 |
+
g: torch.Tensor,
|
729 |
+
h0: torch.Tensor,
|
730 |
+
h: torch.Tensor,
|
731 |
+
A: torch.Tensor,
|
732 |
+
do: torch.Tensor,
|
733 |
+
dht: torch.Tensor,
|
734 |
+
dg: torch.Tensor,
|
735 |
+
scale: float = 1.,
|
736 |
+
offsets: Optional[torch.LongTensor] = None,
|
737 |
+
indices: Optional[torch.LongTensor] = None,
|
738 |
+
head_first: bool = True,
|
739 |
+
chunk_size: int = 64
|
740 |
+
):
|
741 |
+
dq, dk, dv, dg, dh0 = chunk_gla_bwd(
|
742 |
+
q=q,
|
743 |
+
k=k,
|
744 |
+
v=v,
|
745 |
+
g=None,
|
746 |
+
g_cumsum=g,
|
747 |
+
scale=scale,
|
748 |
+
initial_state=h0,
|
749 |
+
h=h,
|
750 |
+
A=A,
|
751 |
+
do=do,
|
752 |
+
dht=dht,
|
753 |
+
offsets=offsets,
|
754 |
+
indices=indices,
|
755 |
+
head_first=head_first,
|
756 |
+
chunk_size=chunk_size
|
757 |
+
)
|
758 |
+
return dq, dk, dv, dg, dh0
|
759 |
+
|
760 |
+
|
761 |
+
def chunk_gsa_bwd_k(
|
762 |
+
q: torch.Tensor,
|
763 |
+
k: torch.Tensor,
|
764 |
+
v: torch.Tensor,
|
765 |
+
g: torch.Tensor,
|
766 |
+
h: torch.Tensor,
|
767 |
+
h0: torch.Tensor,
|
768 |
+
o: torch.Tensor,
|
769 |
+
do: torch.Tensor,
|
770 |
+
dht: torch.Tensor,
|
771 |
+
dg: torch.Tensor,
|
772 |
+
scale: float = 1.,
|
773 |
+
offsets: Optional[torch.LongTensor] = None,
|
774 |
+
indices: Optional[torch.LongTensor] = None,
|
775 |
+
head_first: bool = True,
|
776 |
+
chunk_size: int = 64
|
777 |
+
):
|
778 |
+
if head_first:
|
779 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
780 |
+
else:
|
781 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
782 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
783 |
+
BC = min(16, BT)
|
784 |
+
BK = min(64, triton.next_power_of_2(K))
|
785 |
+
BV = min(64, triton.next_power_of_2(V))
|
786 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
787 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
788 |
+
NC = triton.cdiv(BT, BC)
|
789 |
+
NK = triton.cdiv(K, BK)
|
790 |
+
NV = triton.cdiv(V, BV)
|
791 |
+
NG = HQ // H
|
792 |
+
|
793 |
+
if h is None:
|
794 |
+
h, _ = chunk_fwd_h(
|
795 |
+
k=k,
|
796 |
+
v=v,
|
797 |
+
g=None,
|
798 |
+
gk=None,
|
799 |
+
gv=g,
|
800 |
+
h0=h0,
|
801 |
+
output_final_state=False,
|
802 |
+
offsets=offsets,
|
803 |
+
head_first=head_first,
|
804 |
+
chunk_size=BT,
|
805 |
+
states_in_fp32=False
|
806 |
+
)
|
807 |
+
dh, dh0 = chunk_bwd_dh(
|
808 |
+
q=q,
|
809 |
+
k=k,
|
810 |
+
v=v,
|
811 |
+
g=None,
|
812 |
+
gk=None,
|
813 |
+
gv=g,
|
814 |
+
do=do,
|
815 |
+
h0=h0,
|
816 |
+
dht=dht,
|
817 |
+
scale=scale,
|
818 |
+
offsets=offsets,
|
819 |
+
head_first=head_first,
|
820 |
+
chunk_size=BT,
|
821 |
+
states_in_fp32=True
|
822 |
+
)
|
823 |
+
dA = q.new_empty(NV, B, *((HQ, T) if head_first else (T, HQ)), BT)
|
824 |
+
grid = (NV, NT * NC * NC, B * HQ)
|
825 |
+
chunk_gsa_bwd_k_kernel_dA[grid](
|
826 |
+
v,
|
827 |
+
g,
|
828 |
+
do,
|
829 |
+
dA,
|
830 |
+
offsets=offsets,
|
831 |
+
indices=indices,
|
832 |
+
scale=scale,
|
833 |
+
T=T,
|
834 |
+
B=B,
|
835 |
+
HQ=HQ,
|
836 |
+
H=H,
|
837 |
+
V=V,
|
838 |
+
BT=BT,
|
839 |
+
BC=BC,
|
840 |
+
BV=BV,
|
841 |
+
NC=NC,
|
842 |
+
NG=NG,
|
843 |
+
HEAD_FIRST=head_first
|
844 |
+
)
|
845 |
+
dA = dA.sum(0, dtype=dA.dtype)
|
846 |
+
|
847 |
+
A = do.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), BT)
|
848 |
+
dq = torch.empty_like(q)
|
849 |
+
dk = k.new_empty(B, *((HQ, T) if head_first else (T, HQ)), K)
|
850 |
+
dv = v.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), V)
|
851 |
+
dgv = g.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), V, dtype=torch.float)
|
852 |
+
grid = (NK, NT, B * HQ)
|
853 |
+
chunk_gsa_bwd_k_kernel_dqkvg[grid](
|
854 |
+
q,
|
855 |
+
k,
|
856 |
+
v,
|
857 |
+
h,
|
858 |
+
g,
|
859 |
+
A,
|
860 |
+
do,
|
861 |
+
dh,
|
862 |
+
dq,
|
863 |
+
dk,
|
864 |
+
dv,
|
865 |
+
dg,
|
866 |
+
dgv,
|
867 |
+
dA,
|
868 |
+
offsets=offsets,
|
869 |
+
indices=indices,
|
870 |
+
scale=scale,
|
871 |
+
T=T,
|
872 |
+
B=B,
|
873 |
+
HQ=HQ,
|
874 |
+
H=H,
|
875 |
+
K=K,
|
876 |
+
V=V,
|
877 |
+
BT=BT,
|
878 |
+
BK=BK,
|
879 |
+
BV=BV,
|
880 |
+
NG=NG,
|
881 |
+
HEAD_FIRST=head_first
|
882 |
+
)
|
883 |
+
A = A.sum(0, dtype=A.dtype)
|
884 |
+
dv = dv.sum(0, dtype=dv.dtype)
|
885 |
+
dgv = dgv.sum(0, dtype=dgv.dtype)
|
886 |
+
|
887 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT * NC, B * HQ)
|
888 |
+
chunk_gsa_bwd_k_kernel_intra_dvg[grid](
|
889 |
+
v,
|
890 |
+
g,
|
891 |
+
o,
|
892 |
+
A,
|
893 |
+
do,
|
894 |
+
dv,
|
895 |
+
dg,
|
896 |
+
offsets=offsets,
|
897 |
+
indices=indices,
|
898 |
+
T=T,
|
899 |
+
HQ=HQ,
|
900 |
+
H=H,
|
901 |
+
V=V,
|
902 |
+
BT=BT,
|
903 |
+
BC=BC,
|
904 |
+
BV=BV,
|
905 |
+
NC=NC,
|
906 |
+
NG=NG,
|
907 |
+
HEAD_FIRST=head_first,
|
908 |
+
num_warps=4,
|
909 |
+
num_stages=2
|
910 |
+
)
|
911 |
+
dg = dgv.add_(chunk_local_cumsum(dg, chunk_size=BT, reverse=True, offsets=offsets, indices=indices, head_first=head_first))
|
912 |
+
|
913 |
+
return dq, dk, dv, dg, dh0
|
914 |
+
|
915 |
+
|
916 |
+
def chunk_gsa_fwd(
|
917 |
+
q: torch.Tensor,
|
918 |
+
k: torch.Tensor,
|
919 |
+
v: torch.Tensor,
|
920 |
+
s: torch.Tensor,
|
921 |
+
g: torch.Tensor,
|
922 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
923 |
+
output_final_state: bool = False,
|
924 |
+
scale: float = 1.,
|
925 |
+
offsets: Optional[torch.LongTensor] = None,
|
926 |
+
indices: Optional[torch.LongTensor] = None,
|
927 |
+
head_first: bool = True,
|
928 |
+
chunk_size: int = 64
|
929 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
930 |
+
hk0, hv0 = None, None
|
931 |
+
if initial_state is not None:
|
932 |
+
hk0, hv0 = initial_state
|
933 |
+
Ak, hk, hkt, ok = chunk_gsa_fwd_k(
|
934 |
+
q=q,
|
935 |
+
k=k,
|
936 |
+
v=s,
|
937 |
+
g=g,
|
938 |
+
h0=hk0,
|
939 |
+
output_final_state=output_final_state,
|
940 |
+
scale=scale,
|
941 |
+
offsets=offsets,
|
942 |
+
indices=indices,
|
943 |
+
head_first=head_first,
|
944 |
+
chunk_size=chunk_size
|
945 |
+
)
|
946 |
+
|
947 |
+
# p is kept in fp32 for safe softmax backward
|
948 |
+
p = softmax_fwd(ok, dtype=torch.float)
|
949 |
+
|
950 |
+
qv = p.to(q.dtype)
|
951 |
+
Av, hv, hvt, ov = chunk_gsa_fwd_v(
|
952 |
+
q=qv,
|
953 |
+
k=s,
|
954 |
+
v=v,
|
955 |
+
g=g,
|
956 |
+
scale=1.,
|
957 |
+
initial_state=hv0,
|
958 |
+
output_final_state=output_final_state,
|
959 |
+
offsets=offsets,
|
960 |
+
indices=indices,
|
961 |
+
head_first=head_first,
|
962 |
+
chunk_size=chunk_size
|
963 |
+
)
|
964 |
+
return Ak, hk, hkt, ok, p, Av, hv, hvt, ov
|
965 |
+
|
966 |
+
|
967 |
+
def chunk_gsa_bwd(
|
968 |
+
q: torch.Tensor,
|
969 |
+
k: torch.Tensor,
|
970 |
+
v: torch.Tensor,
|
971 |
+
s: torch.Tensor,
|
972 |
+
g: torch.Tensor,
|
973 |
+
ok: torch.Tensor,
|
974 |
+
p: torch.Tensor,
|
975 |
+
A: Tuple[torch.Tensor, torch.Tensor],
|
976 |
+
h: Tuple[torch.Tensor, torch.Tensor],
|
977 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
978 |
+
scale: float,
|
979 |
+
do: torch.Tensor,
|
980 |
+
dht: Tuple[torch.Tensor, torch.Tensor],
|
981 |
+
offsets: Optional[torch.LongTensor] = None,
|
982 |
+
indices: Optional[torch.LongTensor] = None,
|
983 |
+
head_first: bool = True,
|
984 |
+
chunk_size: int = 64
|
985 |
+
):
|
986 |
+
hk0, hv0 = None, None
|
987 |
+
if initial_state is not None:
|
988 |
+
hk0, hv0 = initial_state
|
989 |
+
|
990 |
+
_, Av = A
|
991 |
+
hk, hv = h
|
992 |
+
dhkt, dhvt = dht
|
993 |
+
|
994 |
+
qv = p.to(q.dtype)
|
995 |
+
dqv, dsv, dv, dg, dhv0 = chunk_gsa_bwd_v(
|
996 |
+
q=qv,
|
997 |
+
k=s,
|
998 |
+
v=v,
|
999 |
+
g=g,
|
1000 |
+
h0=hv0,
|
1001 |
+
h=hv,
|
1002 |
+
A=Av,
|
1003 |
+
do=do,
|
1004 |
+
dht=dhvt,
|
1005 |
+
dg=None,
|
1006 |
+
scale=1.,
|
1007 |
+
offsets=offsets,
|
1008 |
+
indices=indices,
|
1009 |
+
head_first=head_first,
|
1010 |
+
chunk_size=chunk_size
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
# softmax gradient, equivalent to:
|
1014 |
+
# dok = qv * (dqv - (qv * dqv).sum(-1, True))
|
1015 |
+
dok = softmax_bwd(p, dqv, dtype=ok.dtype)
|
1016 |
+
|
1017 |
+
dq, dk, dsk, dg, dhk0 = chunk_gsa_bwd_k(
|
1018 |
+
q=q,
|
1019 |
+
k=k,
|
1020 |
+
v=s,
|
1021 |
+
g=g,
|
1022 |
+
h0=hk0,
|
1023 |
+
h=hk,
|
1024 |
+
o=ok,
|
1025 |
+
do=dok,
|
1026 |
+
dht=dhkt,
|
1027 |
+
dg=dg,
|
1028 |
+
scale=scale,
|
1029 |
+
offsets=offsets,
|
1030 |
+
indices=indices,
|
1031 |
+
head_first=head_first,
|
1032 |
+
chunk_size=chunk_size
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
ds = dsv.add_(dsk)
|
1036 |
+
if q.shape[1] != k.shape[1]:
|
1037 |
+
dk, dv, ds, dg = map(lambda x: reduce(x, 'b (h g) ... -> b h ...', 'sum', h=k.shape[1]), (dk, dv, ds, dg))
|
1038 |
+
dg = dg.to(s.dtype)
|
1039 |
+
return dq, dk, dv, ds, dg, dhk0, dhv0
|
1040 |
+
|
1041 |
+
|
1042 |
+
class ChunkGSAFunction(torch.autograd.Function):
|
1043 |
+
|
1044 |
+
@staticmethod
|
1045 |
+
@input_guard
|
1046 |
+
def forward(
|
1047 |
+
ctx,
|
1048 |
+
q: torch.Tensor,
|
1049 |
+
k: torch.Tensor,
|
1050 |
+
v: torch.Tensor,
|
1051 |
+
s: torch.Tensor,
|
1052 |
+
g: torch.Tensor,
|
1053 |
+
scale: float,
|
1054 |
+
hk0: Optional[torch.Tensor],
|
1055 |
+
hv0: Optional[torch.Tensor],
|
1056 |
+
output_final_state: bool,
|
1057 |
+
checkpoint_level: int,
|
1058 |
+
offsets: Optional[torch.LongTensor],
|
1059 |
+
head_first: bool = True
|
1060 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
1061 |
+
T = q.shape[2] if head_first else q.shape[1]
|
1062 |
+
chunk_size = min(64, max(16, triton.next_power_of_2(T)))
|
1063 |
+
|
1064 |
+
# 2-d indices denoting the offsets of chunks in each sequence
|
1065 |
+
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
|
1066 |
+
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
|
1067 |
+
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
|
1068 |
+
indices = None
|
1069 |
+
if offsets is not None:
|
1070 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()])
|
1071 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
1072 |
+
g_org, g = g, chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first)
|
1073 |
+
Ak, hk, hkt, ok, p, Av, hv, hvt, ov = chunk_gsa_fwd(
|
1074 |
+
q=q,
|
1075 |
+
k=k,
|
1076 |
+
v=v,
|
1077 |
+
s=s,
|
1078 |
+
g=g,
|
1079 |
+
initial_state=(hk0, hv0),
|
1080 |
+
output_final_state=output_final_state,
|
1081 |
+
scale=scale,
|
1082 |
+
offsets=offsets,
|
1083 |
+
indices=indices,
|
1084 |
+
head_first=head_first,
|
1085 |
+
chunk_size=chunk_size
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
if checkpoint_level >= 1:
|
1089 |
+
del g
|
1090 |
+
g = g_org
|
1091 |
+
if checkpoint_level > 1:
|
1092 |
+
del hk
|
1093 |
+
del hv
|
1094 |
+
hk, hv = None, None
|
1095 |
+
else:
|
1096 |
+
hk0, hv0 = None, None
|
1097 |
+
|
1098 |
+
ctx.save_for_backward(q, k, v, s, g, ok, p, Av, hk0, hv0, hk, hv)
|
1099 |
+
ctx.checkpoint_level = checkpoint_level
|
1100 |
+
ctx.scale = scale
|
1101 |
+
ctx.offsets = offsets
|
1102 |
+
ctx.indices = indices
|
1103 |
+
ctx.head_first = head_first
|
1104 |
+
ctx.chunk_size = chunk_size
|
1105 |
+
return ov, hkt, hvt
|
1106 |
+
|
1107 |
+
@staticmethod
|
1108 |
+
@input_guard
|
1109 |
+
def backward(ctx, dov, dhkt=None, dhvt=None):
|
1110 |
+
q, k, v, s, g, ok, p, Av, hk0, hv0, hk, hv = ctx.saved_tensors
|
1111 |
+
scale = ctx.scale
|
1112 |
+
offsets = ctx.offsets
|
1113 |
+
indices = ctx.indices
|
1114 |
+
head_first = ctx.head_first
|
1115 |
+
chunk_size = ctx.chunk_size
|
1116 |
+
|
1117 |
+
if ctx.checkpoint_level >= 1:
|
1118 |
+
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first)
|
1119 |
+
dq, dk, dv, ds, dg, dhk0, dhv0 = chunk_gsa_bwd(
|
1120 |
+
q=q,
|
1121 |
+
k=k,
|
1122 |
+
v=v,
|
1123 |
+
s=s,
|
1124 |
+
g=g,
|
1125 |
+
ok=ok,
|
1126 |
+
p=p,
|
1127 |
+
A=(None, Av),
|
1128 |
+
h=(hk, hv),
|
1129 |
+
initial_state=(hk0, hv0),
|
1130 |
+
scale=scale,
|
1131 |
+
do=dov,
|
1132 |
+
dht=(dhkt, dhvt),
|
1133 |
+
offsets=offsets,
|
1134 |
+
indices=indices,
|
1135 |
+
head_first=head_first,
|
1136 |
+
chunk_size=chunk_size
|
1137 |
+
)
|
1138 |
+
return dq, dk, dv, ds, dg, None, dhk0, dhv0, None, None, None, None
|
1139 |
+
|
1140 |
+
|
1141 |
+
@torch.compiler.disable
|
1142 |
+
def chunk_gsa(
|
1143 |
+
q: torch.Tensor,
|
1144 |
+
k: torch.Tensor,
|
1145 |
+
v: torch.Tensor,
|
1146 |
+
s: torch.Tensor,
|
1147 |
+
g: Optional[torch.Tensor] = None,
|
1148 |
+
scale: Optional[int] = None,
|
1149 |
+
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
1150 |
+
output_final_state: Optional[bool] = False,
|
1151 |
+
checkpoint_level: Optional[int] = 2,
|
1152 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
1153 |
+
head_first: Optional[bool] = True
|
1154 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1155 |
+
r"""
|
1156 |
+
Args:
|
1157 |
+
q (torch.Tensor):
|
1158 |
+
queries of shape `[B, HQ, T, K]` if `head_first=True` else `[B, T, HQ, K]`.
|
1159 |
+
k (torch.Tensor):
|
1160 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
1161 |
+
GQA is performed if `H` is not equal to `HQ`.
|
1162 |
+
v (torch.Tensor):
|
1163 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
1164 |
+
s (torch.Tensor):
|
1165 |
+
slot representations of shape `[B, H, T, M]` if `head_first=True` else `[B, T, H, M]`.
|
1166 |
+
g (torch.Tensor):
|
1167 |
+
Forget gates of shape `[B, H, T, M]` applied to keys.
|
1168 |
+
If not provided, this function is equivalent to vanilla ABC.
|
1169 |
+
scale (Optional[int]):
|
1170 |
+
Scale factor for attention scores.
|
1171 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
1172 |
+
initial_state (Optional[Tuple[torch.Tensor]]):
|
1173 |
+
Initial state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]` for `N` input sequences.
|
1174 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
1175 |
+
Default: `None`.
|
1176 |
+
output_final_state (Optional[bool]):
|
1177 |
+
Whether to output the final state tuple, having tensors of shape `[N, H, K, M]` and `[N, H, M, V]`.
|
1178 |
+
Default: `False`.
|
1179 |
+
checkpoint_level (Optional[int]):
|
1180 |
+
Checkpointing level; higher values will save more memories and do more recomputations during backward.
|
1181 |
+
Default: `2`:
|
1182 |
+
- Level `0`: no memory saved, no recomputation.
|
1183 |
+
- Level `1`: recompute the fp32 cumulative values during backward.
|
1184 |
+
- Level `2`: recompute the fp32 cumulative values and forward hidden states during backward.
|
1185 |
+
cu_seqlens (torch.LongTensor):
|
1186 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
1187 |
+
consistent with the FlashAttention API.
|
1188 |
+
head_first (Optional[bool]):
|
1189 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
1190 |
+
Default: `True`.
|
1191 |
+
|
1192 |
+
Returns:
|
1193 |
+
o (torch.Tensor):
|
1194 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
1195 |
+
final_state (Tuple[torch.Tensor]):
|
1196 |
+
Final state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]` if `output_final_state=True`.
|
1197 |
+
`None` otherwise.
|
1198 |
+
|
1199 |
+
Examples::
|
1200 |
+
>>> import torch
|
1201 |
+
>>> import torch.nn.functional as F
|
1202 |
+
>>> from einops import rearrange
|
1203 |
+
>>> from fla.ops.gsa import fused_recurrent_gsa
|
1204 |
+
# inputs with equal lengths
|
1205 |
+
>>> B, T, H, K, V, M = 4, 2048, 4, 512, 512, 64
|
1206 |
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
1207 |
+
>>> k = torch.randn(B, T, H, K, device='cuda')
|
1208 |
+
>>> v = torch.randn(B, T, H, V, device='cuda')
|
1209 |
+
>>> s = torch.randn(B, T, H, M, device='cuda')
|
1210 |
+
>>> g = F.logsigmoid(torch.randn(B, T, H, M, device='cuda'))
|
1211 |
+
>>> h0 = (torch.randn(B, H, K, M, device='cuda'), torch.randn(B, H, M, V, device='cuda'))
|
1212 |
+
>>> o, (hk, hv) = chunk_gsa(q, k, v, s, g,
|
1213 |
+
initial_state=h0,
|
1214 |
+
output_final_state=True,
|
1215 |
+
head_first=False)
|
1216 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
1217 |
+
>>> q, k, v, s, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, s, g))
|
1218 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
1219 |
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
1220 |
+
>>> o_var, (hk_var, hv_var) = chunk_gsa(q, k, v, s, g,
|
1221 |
+
initial_state=h0,
|
1222 |
+
output_final_state=True,
|
1223 |
+
cu_seqlens=cu_seqlens,
|
1224 |
+
head_first=False)
|
1225 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
1226 |
+
>>> assert hk.allclose(hk_var)
|
1227 |
+
>>> assert hv.allclose(hv_var)
|
1228 |
+
"""
|
1229 |
+
if cu_seqlens is not None:
|
1230 |
+
if q.shape[0] != 1:
|
1231 |
+
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
1232 |
+
f"Please flatten variable-length inputs before processing.")
|
1233 |
+
if head_first:
|
1234 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
1235 |
+
if initial_state is not None and initial_state[0].shape[0] != len(cu_seqlens) - 1:
|
1236 |
+
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
|
1237 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state[0].shape[0]}.")
|
1238 |
+
assert checkpoint_level in [0, 1, 2]
|
1239 |
+
if g is None:
|
1240 |
+
# TODO: this 3 steps took huge amount of time, ought to be optimized
|
1241 |
+
z = s.float().logcumsumexp(2)
|
1242 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
1243 |
+
s = torch.exp(s - z).to(k.dtype)
|
1244 |
+
if scale is None:
|
1245 |
+
scale = q.shape[-1] ** -0.5
|
1246 |
+
|
1247 |
+
hk0, hv0 = None, None
|
1248 |
+
if initial_state is not None:
|
1249 |
+
hk0, hv0 = initial_state
|
1250 |
+
o, *final_state = ChunkGSAFunction.apply(
|
1251 |
+
q,
|
1252 |
+
k,
|
1253 |
+
v,
|
1254 |
+
s,
|
1255 |
+
g,
|
1256 |
+
scale,
|
1257 |
+
hk0,
|
1258 |
+
hv0,
|
1259 |
+
output_final_state,
|
1260 |
+
checkpoint_level,
|
1261 |
+
cu_seqlens,
|
1262 |
+
head_first
|
1263 |
+
)
|
1264 |
+
return o, final_state
|
fla/ops/gsa/fused_recurrent.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.common.fused_recurrent import fused_recurrent_bwd_kernel, fused_recurrent_fwd_kernel
|
11 |
+
from fla.ops.utils import chunk_global_cumsum
|
12 |
+
from fla.ops.utils.op import exp
|
13 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
14 |
+
|
15 |
+
|
16 |
+
@triton.jit
|
17 |
+
def fused_recurrent_gsa_inference_kernel(
|
18 |
+
q,
|
19 |
+
k,
|
20 |
+
v,
|
21 |
+
s,
|
22 |
+
g,
|
23 |
+
o,
|
24 |
+
hk0,
|
25 |
+
hv0,
|
26 |
+
hkt,
|
27 |
+
hvt,
|
28 |
+
scale,
|
29 |
+
K: tl.constexpr,
|
30 |
+
V: tl.constexpr,
|
31 |
+
M: tl.constexpr,
|
32 |
+
BK: tl.constexpr,
|
33 |
+
BV: tl.constexpr,
|
34 |
+
NG: tl.constexpr
|
35 |
+
):
|
36 |
+
i_bh = tl.program_id(0)
|
37 |
+
i_bg = i_bh // NG
|
38 |
+
|
39 |
+
b_s = tl.load(s + i_bg * M + tl.arange(0, M)).to(tl.float32)
|
40 |
+
b_g = tl.load(g + i_bg * M + tl.arange(0, M)).to(tl.float32)
|
41 |
+
b_g = exp(b_g)
|
42 |
+
|
43 |
+
b_ok = tl.zeros([M], dtype=tl.float32)
|
44 |
+
for i_k in range(tl.cdiv(K, BK)):
|
45 |
+
o_k = i_k * BK + tl.arange(0, BK)
|
46 |
+
|
47 |
+
p_hk0 = hk0 + i_bg * K * M + (o_k[None, :]) * M + tl.arange(0, M)[:, None]
|
48 |
+
# [BK,]
|
49 |
+
mask_k = o_k < K
|
50 |
+
# [M, BK]
|
51 |
+
mask_hk = (tl.arange(0, M) < M)[:, None] & mask_k[None, :]
|
52 |
+
# [M, BK]
|
53 |
+
b_hk = tl.load(p_hk0, mask=mask_hk, other=0.).to(tl.float32)
|
54 |
+
# [BK,]
|
55 |
+
b_q = tl.load(q + i_bh * K + o_k, mask=mask_k, other=0.).to(tl.float32) * scale
|
56 |
+
b_k = tl.load(k + i_bg * K + o_k, mask=mask_k, other=0.).to(tl.float32)
|
57 |
+
b_hk = b_hk * b_g[:, None] + b_k[None, :] * b_s[:, None]
|
58 |
+
b_ok += tl.sum(b_hk * b_q[None, :], axis=1)
|
59 |
+
|
60 |
+
if i_bh % NG == 0:
|
61 |
+
p_hkt = hkt + i_bg * K * M + o_k[None, :] * M + tl.arange(0, M)[:, None]
|
62 |
+
tl.store(p_hkt, b_hk.to(p_hkt.dtype.element_ty), mask=mask_hk)
|
63 |
+
|
64 |
+
b_qv = tl.softmax(b_ok)
|
65 |
+
for i_v in range(tl.cdiv(V, BV)):
|
66 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
67 |
+
|
68 |
+
p_hv0 = hv0 + i_bg * M * V + tl.arange(0, M)[None, :] * V + o_v[:, None]
|
69 |
+
# [BV,]
|
70 |
+
mask_v = o_v < V
|
71 |
+
# [BV, M]
|
72 |
+
mask_hv = mask_v[:, None] & (tl.arange(0, M) < M)[None, :]
|
73 |
+
# [BV, M]
|
74 |
+
b_hv = tl.load(p_hv0, mask=mask_hv, other=0).to(tl.float32)
|
75 |
+
# [BV,]
|
76 |
+
b_v = tl.load(v + i_bg * V + o_v, mask=mask_v, other=0).to(tl.float32)
|
77 |
+
b_hv = b_hv * b_g[None, :] + b_s[None, :] * b_v[:, None]
|
78 |
+
b_ov = tl.sum(b_hv * b_qv[None, :], axis=1)
|
79 |
+
|
80 |
+
tl.store(o + i_bh * V + o_v, b_ov.to(o.dtype.element_ty), mask=mask_v)
|
81 |
+
|
82 |
+
if i_bh % NG == 0:
|
83 |
+
p_hvt = hvt + i_bg * M * V + tl.arange(0, M)[None, :] * V + o_v[:, None]
|
84 |
+
tl.store(p_hvt, b_hv.to(p_hvt.dtype.element_ty), mask=mask_hv)
|
85 |
+
|
86 |
+
|
87 |
+
def fused_recurrent_gsa_inference(
|
88 |
+
q: torch.Tensor,
|
89 |
+
k: torch.Tensor,
|
90 |
+
v: torch.Tensor,
|
91 |
+
s: torch.Tensor,
|
92 |
+
g: torch.Tensor,
|
93 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
94 |
+
output_final_state: bool = False,
|
95 |
+
scale: float = 1.,
|
96 |
+
head_first: bool = True
|
97 |
+
) -> torch.Tensor:
|
98 |
+
if head_first:
|
99 |
+
B, H, T, K, V, M = *k.shape, v.shape[-1], s.shape[-1]
|
100 |
+
else:
|
101 |
+
B, T, H, K, V, M = *k.shape, v.shape[-1], s.shape[-1]
|
102 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
103 |
+
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
|
104 |
+
NG = HQ // H
|
105 |
+
|
106 |
+
if initial_state != (None, None) and initial_state is not None:
|
107 |
+
hk0, hv0 = initial_state
|
108 |
+
else:
|
109 |
+
hk0, hv0 = q.new_zeros(B, H, K, M, dtype=torch.float), q.new_zeros(B, H, M, V, dtype=torch.float)
|
110 |
+
|
111 |
+
hkt, hvt = None, None
|
112 |
+
if output_final_state:
|
113 |
+
if NG == 1:
|
114 |
+
hkt, hvt = hk0, hv0
|
115 |
+
else:
|
116 |
+
hkt, hvt = q.new_empty(B, H, K, M, dtype=torch.float), q.new_empty(B, H, M, V, dtype=torch.float)
|
117 |
+
|
118 |
+
o = v.new_empty(B, HQ, T, V) if head_first else v.new_empty(B, T, HQ, V)
|
119 |
+
grid = (B * HQ,)
|
120 |
+
fused_recurrent_gsa_inference_kernel[grid](
|
121 |
+
q,
|
122 |
+
k,
|
123 |
+
v,
|
124 |
+
s,
|
125 |
+
g,
|
126 |
+
o,
|
127 |
+
hk0,
|
128 |
+
hv0,
|
129 |
+
hkt,
|
130 |
+
hvt,
|
131 |
+
scale=scale,
|
132 |
+
K=K,
|
133 |
+
V=V,
|
134 |
+
M=M,
|
135 |
+
BK=BK,
|
136 |
+
BV=BV,
|
137 |
+
NG=NG
|
138 |
+
)
|
139 |
+
return o, (hkt, hvt)
|
140 |
+
|
141 |
+
|
142 |
+
def fused_recurrent_gsa_fwd(
|
143 |
+
q: torch.Tensor,
|
144 |
+
k: torch.Tensor,
|
145 |
+
v: torch.Tensor,
|
146 |
+
s: torch.Tensor,
|
147 |
+
g: torch.Tensor,
|
148 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
149 |
+
output_final_state: bool = False,
|
150 |
+
scale: float = 1.,
|
151 |
+
reverse: bool = False,
|
152 |
+
offsets: Optional[torch.LongTensor] = None,
|
153 |
+
head_first: bool = True
|
154 |
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
|
155 |
+
if head_first:
|
156 |
+
B, H, T, K, V, M = *k.shape, v.shape[-1], s.shape[-1]
|
157 |
+
else:
|
158 |
+
B, T, H, K, V, M = *k.shape, v.shape[-1], s.shape[-1]
|
159 |
+
N = B if offsets is None else len(offsets) - 1
|
160 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
161 |
+
if HQ != H:
|
162 |
+
raise ValueError("GQA not supported yet.")
|
163 |
+
|
164 |
+
BK, BV, BM = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64), min(M, 64)
|
165 |
+
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
166 |
+
|
167 |
+
hk0, hv0 = None, None
|
168 |
+
if initial_state != (None, None) and initial_state is not None:
|
169 |
+
hk0, hv0 = initial_state
|
170 |
+
hkt, hvt = None, None
|
171 |
+
if output_final_state:
|
172 |
+
hkt, hvt = q.new_empty(N, H, K, M, dtype=torch.float), q.new_empty(N, H, M, V, dtype=torch.float)
|
173 |
+
|
174 |
+
ok = q.new_empty(NK, *s.shape, dtype=torch.float)
|
175 |
+
gk, gv = None, g
|
176 |
+
grid = (NM, NK, N * H)
|
177 |
+
fused_recurrent_fwd_kernel[grid](
|
178 |
+
q=q,
|
179 |
+
k=k,
|
180 |
+
v=s,
|
181 |
+
g=None,
|
182 |
+
gk=gk,
|
183 |
+
gv=gv,
|
184 |
+
o=ok,
|
185 |
+
h0=hk0,
|
186 |
+
ht=hkt,
|
187 |
+
offsets=offsets,
|
188 |
+
scale=scale,
|
189 |
+
B=B,
|
190 |
+
T=T,
|
191 |
+
H=H,
|
192 |
+
K=K,
|
193 |
+
V=M,
|
194 |
+
BK=BK,
|
195 |
+
BV=BM,
|
196 |
+
USE_G=False,
|
197 |
+
USE_GK=False,
|
198 |
+
USE_GV=True,
|
199 |
+
REVERSE=reverse,
|
200 |
+
HEAD_FIRST=head_first
|
201 |
+
)
|
202 |
+
ok = ok.sum(0)
|
203 |
+
|
204 |
+
qv = ok.softmax(-1, dtype=torch.float)
|
205 |
+
ov = q.new_empty(NM, *v.shape, dtype=torch.float)
|
206 |
+
gk, gv = g, None
|
207 |
+
grid = (NV, NM, N * H)
|
208 |
+
fused_recurrent_fwd_kernel[grid](
|
209 |
+
q=qv,
|
210 |
+
k=s,
|
211 |
+
v=v,
|
212 |
+
g=None,
|
213 |
+
gk=gk,
|
214 |
+
gv=gv,
|
215 |
+
o=ov,
|
216 |
+
h0=hv0,
|
217 |
+
ht=hvt,
|
218 |
+
offsets=offsets,
|
219 |
+
scale=1.,
|
220 |
+
B=B,
|
221 |
+
T=T,
|
222 |
+
H=H,
|
223 |
+
K=M,
|
224 |
+
V=V,
|
225 |
+
BK=BM,
|
226 |
+
BV=BV,
|
227 |
+
USE_G=False,
|
228 |
+
USE_GK=True,
|
229 |
+
USE_GV=False,
|
230 |
+
REVERSE=reverse,
|
231 |
+
HEAD_FIRST=head_first
|
232 |
+
)
|
233 |
+
ov = ov.sum(0)
|
234 |
+
return ok, hkt, qv, ov, hvt
|
235 |
+
|
236 |
+
|
237 |
+
def fused_recurrent_gsa_bwd(
|
238 |
+
q: torch.Tensor,
|
239 |
+
k: torch.Tensor,
|
240 |
+
v: torch.Tensor,
|
241 |
+
s: torch.Tensor,
|
242 |
+
g: torch.Tensor,
|
243 |
+
qv: torch.Tensor,
|
244 |
+
hk0: Optional[torch.Tensor] = None,
|
245 |
+
hv0: Optional[torch.Tensor] = None,
|
246 |
+
ok: Optional[torch.Tensor] = None,
|
247 |
+
do: Optional[torch.Tensor] = None,
|
248 |
+
dhkt: Optional[torch.Tensor] = None,
|
249 |
+
dhvt: Optional[torch.Tensor] = None,
|
250 |
+
scale: float = 1.,
|
251 |
+
reverse: bool = False,
|
252 |
+
offsets: Optional[torch.LongTensor] = None,
|
253 |
+
head_first: bool = True
|
254 |
+
) -> Tuple[torch.Tensor]:
|
255 |
+
if head_first:
|
256 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
257 |
+
else:
|
258 |
+
B, T, H, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
259 |
+
N = B if offsets is None else len(offsets) - 1
|
260 |
+
|
261 |
+
BK, BV, BM = min(K, 64), min(V, 64), min(M, 64)
|
262 |
+
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
263 |
+
|
264 |
+
if head_first:
|
265 |
+
dqv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
266 |
+
dsv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
267 |
+
dv = q.new_empty(NM, B, H, T, V, dtype=torch.float)
|
268 |
+
else:
|
269 |
+
dqv = q.new_empty(NV, B, T, H, M, dtype=torch.float)
|
270 |
+
dsv = q.new_empty(NV, B, T, H, M, dtype=torch.float)
|
271 |
+
dv = q.new_empty(NM, B, T, H, V, dtype=torch.float)
|
272 |
+
dhk0 = torch.empty_like(hk0)if hk0 is not None else None
|
273 |
+
dhv0 = torch.empty_like(hv0)if hv0 is not None else None
|
274 |
+
|
275 |
+
gk, gv = g, None
|
276 |
+
grid = (NV, NM, N * H)
|
277 |
+
fused_recurrent_bwd_kernel[grid](
|
278 |
+
q=qv,
|
279 |
+
k=s,
|
280 |
+
v=v,
|
281 |
+
g=None,
|
282 |
+
gk=gk,
|
283 |
+
gv=gv,
|
284 |
+
h0=hv0,
|
285 |
+
do=do,
|
286 |
+
dq=dqv,
|
287 |
+
dk=dsv,
|
288 |
+
dv=dv,
|
289 |
+
dht=dhvt,
|
290 |
+
dh0=dhv0,
|
291 |
+
offsets=offsets,
|
292 |
+
scale=1.,
|
293 |
+
B=B,
|
294 |
+
T=T,
|
295 |
+
H=H,
|
296 |
+
K=M,
|
297 |
+
V=V,
|
298 |
+
BK=BM,
|
299 |
+
BV=BV,
|
300 |
+
USE_G=False,
|
301 |
+
USE_GK=True,
|
302 |
+
USE_GV=False,
|
303 |
+
REVERSE=reverse,
|
304 |
+
HEAD_FIRST=head_first
|
305 |
+
)
|
306 |
+
dqv = dqv.sum(0)
|
307 |
+
dsv = dsv.sum(0)
|
308 |
+
dv = dv.sum(0)
|
309 |
+
dgk = chunk_global_cumsum(dqv * qv.float() - dsv * s.float(),
|
310 |
+
reverse=not reverse,
|
311 |
+
offsets=offsets,
|
312 |
+
head_first=head_first)
|
313 |
+
|
314 |
+
dok = qv * (dqv - (qv * dqv).sum(-1, True))
|
315 |
+
if head_first:
|
316 |
+
dq = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
317 |
+
dk = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
318 |
+
dsk = q.new_empty(NK, B, H, T, M, dtype=torch.float)
|
319 |
+
else:
|
320 |
+
dq = q.new_empty(NM, B, T, H, K, dtype=torch.float)
|
321 |
+
dk = q.new_empty(NM, B, T, H, K, dtype=torch.float)
|
322 |
+
dsk = q.new_empty(NK, B, T, H, M, dtype=torch.float)
|
323 |
+
gk, gv = None, g
|
324 |
+
grid = (NM, NK, N * H)
|
325 |
+
fused_recurrent_bwd_kernel[grid](
|
326 |
+
q=q,
|
327 |
+
k=k,
|
328 |
+
v=s,
|
329 |
+
g=None,
|
330 |
+
gk=gk,
|
331 |
+
gv=gv,
|
332 |
+
h0=hk0,
|
333 |
+
do=dok,
|
334 |
+
dq=dq,
|
335 |
+
dk=dk,
|
336 |
+
dv=dsk,
|
337 |
+
dht=dhkt,
|
338 |
+
dh0=dhk0,
|
339 |
+
offsets=offsets,
|
340 |
+
scale=scale,
|
341 |
+
B=B,
|
342 |
+
T=T,
|
343 |
+
H=H,
|
344 |
+
K=K,
|
345 |
+
V=M,
|
346 |
+
BK=BK,
|
347 |
+
BV=BM,
|
348 |
+
USE_G=False,
|
349 |
+
USE_GK=False,
|
350 |
+
USE_GV=True,
|
351 |
+
REVERSE=reverse,
|
352 |
+
HEAD_FIRST=head_first
|
353 |
+
)
|
354 |
+
dq = dq.sum(0)
|
355 |
+
dk = dk.sum(0)
|
356 |
+
dsk = dsk.sum(0)
|
357 |
+
|
358 |
+
dgv = chunk_global_cumsum(dok.float() * ok.float() - dsk * s.float(),
|
359 |
+
reverse=not reverse,
|
360 |
+
offsets=offsets,
|
361 |
+
head_first=head_first)
|
362 |
+
|
363 |
+
ds = dsk.add_(dsv)
|
364 |
+
dg = dgk.add_(dgv)
|
365 |
+
|
366 |
+
return dq, dk, dv, ds, dg, dhk0, dhv0
|
367 |
+
|
368 |
+
|
369 |
+
class FusedRecurrentGSAFunction(torch.autograd.Function):
|
370 |
+
|
371 |
+
@staticmethod
|
372 |
+
@input_guard
|
373 |
+
@autocast_custom_fwd
|
374 |
+
def forward(
|
375 |
+
ctx,
|
376 |
+
q: torch.Tensor,
|
377 |
+
k: torch.Tensor,
|
378 |
+
v: torch.Tensor,
|
379 |
+
s: torch.Tensor,
|
380 |
+
g: torch.Tensor,
|
381 |
+
scale: Optional[float] = None,
|
382 |
+
hk0: Optional[torch.Tensor] = None,
|
383 |
+
hv0: Optional[torch.Tensor] = None,
|
384 |
+
output_final_state: bool = False,
|
385 |
+
reverse: bool = False,
|
386 |
+
offsets: Optional[torch.LongTensor] = None,
|
387 |
+
head_first: bool = True
|
388 |
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
|
389 |
+
T = q.shape[2] if head_first else q.shape[1]
|
390 |
+
if T == 1 and not q.requires_grad:
|
391 |
+
o, (hkt, hvt) = fused_recurrent_gsa_inference(
|
392 |
+
q=q,
|
393 |
+
k=k,
|
394 |
+
v=v,
|
395 |
+
s=s,
|
396 |
+
g=g,
|
397 |
+
initial_state=(hk0, hv0),
|
398 |
+
output_final_state=output_final_state,
|
399 |
+
scale=scale,
|
400 |
+
head_first=head_first
|
401 |
+
)
|
402 |
+
return o, hkt, hvt
|
403 |
+
ok, hkt, qv, ov, hvt = fused_recurrent_gsa_fwd(
|
404 |
+
q=q,
|
405 |
+
k=k,
|
406 |
+
v=v,
|
407 |
+
s=s,
|
408 |
+
g=g,
|
409 |
+
initial_state=(hk0, hv0),
|
410 |
+
output_final_state=output_final_state,
|
411 |
+
scale=scale,
|
412 |
+
reverse=reverse,
|
413 |
+
offsets=offsets,
|
414 |
+
head_first=head_first
|
415 |
+
)
|
416 |
+
ctx.save_for_backward(q, k, v, s, g, qv, hk0, hv0, ok)
|
417 |
+
ctx.scale = scale
|
418 |
+
ctx.reverse = reverse
|
419 |
+
ctx.offsets = offsets
|
420 |
+
ctx.head_first = head_first
|
421 |
+
return ov.to(q.dtype), hkt, hvt
|
422 |
+
|
423 |
+
@staticmethod
|
424 |
+
@input_guard
|
425 |
+
@autocast_custom_bwd
|
426 |
+
def backward(ctx, do, dhkt=None, dhvt=None):
|
427 |
+
q, k, v, s, g, qv, hk0, hv0, ok = ctx.saved_tensors
|
428 |
+
scale = ctx.scale
|
429 |
+
reverse = ctx.reverse
|
430 |
+
offsets = ctx.offsets
|
431 |
+
head_first = ctx.head_first
|
432 |
+
|
433 |
+
# not supported yet.
|
434 |
+
if dhkt is not None or dhvt is not None:
|
435 |
+
if g is not None:
|
436 |
+
assert g.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
437 |
+
dq, dk, dv, ds, dg, dhk0, dhv0 = fused_recurrent_gsa_bwd(
|
438 |
+
q=q,
|
439 |
+
k=k,
|
440 |
+
v=v,
|
441 |
+
s=s,
|
442 |
+
g=g,
|
443 |
+
qv=qv,
|
444 |
+
hk0=hk0,
|
445 |
+
hv0=hv0,
|
446 |
+
ok=ok,
|
447 |
+
do=do,
|
448 |
+
dhkt=dhkt,
|
449 |
+
dhvt=dhvt,
|
450 |
+
scale=scale,
|
451 |
+
reverse=reverse,
|
452 |
+
offsets=offsets,
|
453 |
+
head_first=head_first
|
454 |
+
)
|
455 |
+
return dq.to(q), dk.to(k), dv.to(v), ds.to(s), dg.to(g), None, dhk0, dhv0, None, None, None, None
|
456 |
+
|
457 |
+
|
458 |
+
def fused_recurrent_gsa(
|
459 |
+
q: torch.Tensor,
|
460 |
+
k: torch.Tensor,
|
461 |
+
v: torch.Tensor,
|
462 |
+
s: torch.Tensor,
|
463 |
+
g: Optional[torch.Tensor] = None,
|
464 |
+
scale: Optional[int] = None,
|
465 |
+
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
466 |
+
output_final_state: Optional[bool] = False,
|
467 |
+
reverse: Optional[bool] = False,
|
468 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
469 |
+
head_first: bool = True
|
470 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
471 |
+
r"""
|
472 |
+
Args:
|
473 |
+
q (torch.Tensor):
|
474 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
475 |
+
k (torch.Tensor):
|
476 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
477 |
+
v (torch.Tensor):
|
478 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
479 |
+
s (torch.Tensor):
|
480 |
+
slot representations of shape `[B, H, T, M]` if `head_first=True` else `[B, T, H, M]`.
|
481 |
+
g (torch.Tensor):
|
482 |
+
Forget gates of shape `[B, H, T, M]` applied to keys.
|
483 |
+
scale (Optional[int]):
|
484 |
+
Scale factor for the attention scores.
|
485 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
486 |
+
initial_state (Optional[Tuple[torch.Tensor]]):
|
487 |
+
Initial state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]` for `N` input sequences.
|
488 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
489 |
+
Default: `None`.
|
490 |
+
output_final_state (Optional[bool]):
|
491 |
+
Whether to output the final state of shape `[N, H, K, V]` and `[N, H, M, V]`.
|
492 |
+
Default: `False`.
|
493 |
+
reverse (Optional[bool]):
|
494 |
+
If `True`, process the state passing in reverse order. Default: `False`.
|
495 |
+
cu_seqlens (torch.LongTensor):
|
496 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
497 |
+
consistent with the FlashAttention API.
|
498 |
+
head_first (Optional[bool]):
|
499 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
500 |
+
Default: `True`.
|
501 |
+
|
502 |
+
Returns:
|
503 |
+
o (torch.Tensor):
|
504 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
505 |
+
final_state (Tuple[torch.Tensor]):
|
506 |
+
Final state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]`.
|
507 |
+
|
508 |
+
Examples::
|
509 |
+
>>> import torch
|
510 |
+
>>> import torch.nn.functional as F
|
511 |
+
>>> from einops import rearrange
|
512 |
+
>>> from fla.ops.gsa import fused_recurrent_gsa
|
513 |
+
# inputs with equal lengths
|
514 |
+
>>> B, T, H, K, V, M = 4, 2048, 4, 512, 512, 64
|
515 |
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
516 |
+
>>> k = torch.randn(B, T, H, K, device='cuda')
|
517 |
+
>>> v = torch.randn(B, T, H, V, device='cuda')
|
518 |
+
>>> s = torch.randn(B, T, H, M, device='cuda')
|
519 |
+
>>> g = F.logsigmoid(torch.randn(B, T, H, M, device='cuda'))
|
520 |
+
>>> h0 = (torch.randn(B, H, K, M, device='cuda'), torch.randn(B, H, M, V, device='cuda'))
|
521 |
+
>>> o, (hk, hv) = fused_recurrent_gsa(q, k, v, s, g,
|
522 |
+
initial_state=h0,
|
523 |
+
output_final_state=True,
|
524 |
+
head_first=False)
|
525 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
526 |
+
>>> q, k, v, s, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, s, g))
|
527 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
528 |
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
529 |
+
>>> o_var, (hk_var, hv_var) = fused_recurrent_gsa(q, k, v, s, g,
|
530 |
+
initial_state=h0,
|
531 |
+
output_final_state=True,
|
532 |
+
cu_seqlens=cu_seqlens,
|
533 |
+
head_first=False)
|
534 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
535 |
+
>>> assert hk.allclose(hk_var)
|
536 |
+
>>> assert hv.allclose(hv_var)
|
537 |
+
"""
|
538 |
+
if cu_seqlens is not None:
|
539 |
+
if q.shape[0] != 1:
|
540 |
+
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
541 |
+
f"Please flatten variable-length inputs before processing.")
|
542 |
+
if head_first:
|
543 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
544 |
+
if initial_state is not None and initial_state[0].shape[0] != len(cu_seqlens) - 1:
|
545 |
+
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
|
546 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state[0].shape[0]}.")
|
547 |
+
if scale is None:
|
548 |
+
scale = k.shape[-1] ** -0.5
|
549 |
+
if initial_state is None:
|
550 |
+
initial_state = (None, None)
|
551 |
+
o, *final_state = FusedRecurrentGSAFunction.apply(
|
552 |
+
q,
|
553 |
+
k,
|
554 |
+
v,
|
555 |
+
s,
|
556 |
+
g,
|
557 |
+
scale,
|
558 |
+
*initial_state,
|
559 |
+
output_final_state,
|
560 |
+
reverse,
|
561 |
+
cu_seqlens,
|
562 |
+
head_first
|
563 |
+
)
|
564 |
+
return o, final_state
|
fla/ops/gsa/naive.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
|
9 |
+
def naive_recurrent_gsa(
|
10 |
+
q: torch.Tensor,
|
11 |
+
k: torch.Tensor,
|
12 |
+
v: torch.Tensor,
|
13 |
+
s: torch.Tensor,
|
14 |
+
g: Optional[torch.Tensor] = None,
|
15 |
+
scale: Optional[int] = None,
|
16 |
+
initial_state: Optional[torch.Tensor] = None,
|
17 |
+
output_final_state: Optional[bool] = False
|
18 |
+
) -> torch.Tensor:
|
19 |
+
dtype = q.dtype
|
20 |
+
|
21 |
+
NG = q.shape[1]//k.shape[1]
|
22 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
23 |
+
if g is None:
|
24 |
+
z = s.float().logcumsumexp(2)
|
25 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
26 |
+
s = torch.exp(s - z)
|
27 |
+
q, k, v, s, g = map(lambda x: x.float(), (q, k, v, s, g))
|
28 |
+
k, v, s, g = map(lambda x: repeat(x, 'b h t d -> b (h g) t d', g=NG), (k, v, s, g))
|
29 |
+
if initial_state is not None:
|
30 |
+
initial_state = tuple(map(lambda x: repeat(x, 'b h k v -> b (h g) k v', g=NG), initial_state))
|
31 |
+
|
32 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
33 |
+
|
34 |
+
hk = torch.zeros(B, H, K, M, dtype=torch.float, device=q.device)
|
35 |
+
ok = torch.zeros_like(s)
|
36 |
+
|
37 |
+
if scale is None:
|
38 |
+
scale = q.shape[-1] ** -0.5
|
39 |
+
|
40 |
+
final_state = None
|
41 |
+
if initial_state is not None:
|
42 |
+
hk += initial_state[0]
|
43 |
+
|
44 |
+
for i in range(T):
|
45 |
+
q_i = q[:, :, i] * scale
|
46 |
+
k_i = k[:, :, i]
|
47 |
+
v_i = s[:, :, i]
|
48 |
+
g_i = g[:, :, i].exp()
|
49 |
+
hk = hk * g_i[..., None, :] + k_i[..., None] * v_i[..., None, :]
|
50 |
+
ok[:, :, i] = (q_i[..., None] * hk).sum(-2)
|
51 |
+
|
52 |
+
qv = ok.softmax(-1)
|
53 |
+
hv = torch.zeros(B, H, M, V, dtype=torch.float, device=q.device)
|
54 |
+
ov = torch.zeros_like(v)
|
55 |
+
if initial_state is not None:
|
56 |
+
hv += initial_state[1]
|
57 |
+
|
58 |
+
for i in range(T):
|
59 |
+
q_i = qv[:, :, i]
|
60 |
+
k_i = s[:, :, i]
|
61 |
+
v_i = v[:, :, i]
|
62 |
+
g_i = g[:, :, i].exp()
|
63 |
+
hv = hv * g_i[..., :, None] + k_i[..., None] * v_i[..., None, :]
|
64 |
+
ov[:, :, i] = (q_i[..., None] * hv).sum(-2)
|
65 |
+
|
66 |
+
if output_final_state:
|
67 |
+
final_state = (hk.view(B, -1, NG, K, M)[:, :, 0], hv.view(B, -1, NG, M, V)[:, :, 0])
|
68 |
+
return ov.to(dtype), final_state
|
fla/ops/hgrn/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_hgrn
|
4 |
+
from .fused_recurrent import fused_recurrent_hgrn
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'chunk_hgrn',
|
8 |
+
'fused_recurrent_hgrn'
|
9 |
+
]
|
fla/ops/hgrn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (322 Bytes). View file
|
|
fla/ops/hgrn/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (16.9 kB). View file
|
|
fla/ops/hgrn/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (14.7 kB). View file
|
|
fla/ops/hgrn/fused_recurrent.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import exp
|
11 |
+
from fla.utils import input_guard
|
12 |
+
|
13 |
+
|
14 |
+
@triton.heuristics({
|
15 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
16 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
18 |
+
})
|
19 |
+
@triton.autotune(
|
20 |
+
configs=[
|
21 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
22 |
+
for BD in [32, 64, 128]
|
23 |
+
for num_warps in [1, 2, 4, 8]
|
24 |
+
],
|
25 |
+
key=['D']
|
26 |
+
)
|
27 |
+
@triton.jit(do_not_specialize=['T'])
|
28 |
+
def fused_recurrent_hgrn_fwd_kernel(
|
29 |
+
x,
|
30 |
+
g,
|
31 |
+
o,
|
32 |
+
h0,
|
33 |
+
ht,
|
34 |
+
offsets,
|
35 |
+
T,
|
36 |
+
D: tl.constexpr,
|
37 |
+
BD: tl.constexpr,
|
38 |
+
USE_INITIAL_STATE: tl.constexpr,
|
39 |
+
STORE_FINAL_STATE: tl.constexpr,
|
40 |
+
USE_OFFSETS: tl.constexpr
|
41 |
+
):
|
42 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
43 |
+
if USE_OFFSETS:
|
44 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
45 |
+
T = eos - bos
|
46 |
+
else:
|
47 |
+
bos, eos = i_n * T, i_n * T + T
|
48 |
+
|
49 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
50 |
+
mask = o_d < D
|
51 |
+
|
52 |
+
p_x = x + bos * D + o_d
|
53 |
+
p_g = g + bos * D + o_d
|
54 |
+
p_o = o + bos * D + o_d
|
55 |
+
|
56 |
+
b_h = tl.zeros([BD], dtype=tl.float32)
|
57 |
+
if USE_INITIAL_STATE:
|
58 |
+
p_h0 = h0 + i_n * D + o_d
|
59 |
+
b_h += tl.load(p_h0, mask=mask, other=0).to(tl.float32)
|
60 |
+
for _ in range(0, T):
|
61 |
+
b_x = tl.load(p_x, mask=mask, other=0).to(tl.float32)
|
62 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
63 |
+
b_h = exp(b_g) * b_h + b_x
|
64 |
+
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask)
|
65 |
+
|
66 |
+
p_x += D
|
67 |
+
p_g += D
|
68 |
+
p_o += D
|
69 |
+
|
70 |
+
if STORE_FINAL_STATE:
|
71 |
+
p_ht = ht + i_n * D + o_d
|
72 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask)
|
73 |
+
|
74 |
+
|
75 |
+
@triton.heuristics({
|
76 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
77 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
78 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
79 |
+
})
|
80 |
+
@triton.autotune(
|
81 |
+
configs=[
|
82 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
83 |
+
for BD in [32, 64, 128]
|
84 |
+
for num_warps in [1, 2, 4, 8]
|
85 |
+
],
|
86 |
+
key=['D']
|
87 |
+
)
|
88 |
+
@triton.jit(do_not_specialize=['T'])
|
89 |
+
def fused_recurrent_hgrn_bwd_kernel(
|
90 |
+
g,
|
91 |
+
o,
|
92 |
+
h0,
|
93 |
+
dx,
|
94 |
+
dg,
|
95 |
+
do,
|
96 |
+
dht,
|
97 |
+
dh0,
|
98 |
+
offsets,
|
99 |
+
T,
|
100 |
+
D: tl.constexpr,
|
101 |
+
BD: tl.constexpr,
|
102 |
+
USE_INITIAL_STATE: tl.constexpr,
|
103 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
104 |
+
USE_OFFSETS: tl.constexpr
|
105 |
+
):
|
106 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
107 |
+
if USE_OFFSETS:
|
108 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
109 |
+
T = eos - bos
|
110 |
+
else:
|
111 |
+
bos, eos = i_n * T, i_n * T + T
|
112 |
+
|
113 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
114 |
+
mask = o_d < D
|
115 |
+
|
116 |
+
p_g = g + (bos + T - 1) * D + o_d
|
117 |
+
p_o = o + (bos + T - 2) * D + o_d
|
118 |
+
p_dx = dx + (bos + T - 1) * D + o_d
|
119 |
+
p_dg = dg + (bos + T - 1) * D + o_d
|
120 |
+
p_do = do + (bos + T - 1) * D + o_d
|
121 |
+
|
122 |
+
b_dh = tl.zeros([BD], dtype=tl.float32)
|
123 |
+
if USE_FINAL_STATE_GRADIENT:
|
124 |
+
p_dht = dht + i_n * D + o_d
|
125 |
+
b_dh += tl.load(p_dht, mask=mask, other=0).to(tl.float32)
|
126 |
+
|
127 |
+
for i in range(T - 1, -1, -1):
|
128 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
129 |
+
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
|
130 |
+
if i > 0:
|
131 |
+
b_o = tl.load(p_o, mask=mask, other=0).to(tl.float32)
|
132 |
+
elif USE_INITIAL_STATE:
|
133 |
+
b_o = tl.load(h0 + i_n * D + o_d, mask=mask, other=0).to(tl.float32)
|
134 |
+
else:
|
135 |
+
b_o = tl.zeros([BD], dtype=tl.float32)
|
136 |
+
|
137 |
+
b_dh = b_dh + b_do
|
138 |
+
b_dx = b_dh
|
139 |
+
b_dh = b_dh * exp(b_g)
|
140 |
+
b_dg = b_dh * b_o
|
141 |
+
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
|
142 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), mask=mask)
|
143 |
+
|
144 |
+
p_g -= D
|
145 |
+
p_o -= D
|
146 |
+
p_dx -= D
|
147 |
+
p_dg -= D
|
148 |
+
p_do -= D
|
149 |
+
|
150 |
+
if USE_INITIAL_STATE:
|
151 |
+
p_dh0 = dh0 + i_n * D + o_d
|
152 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask)
|
153 |
+
|
154 |
+
|
155 |
+
def fused_recurrent_hgrn_fwd(
|
156 |
+
x: torch.Tensor,
|
157 |
+
g: torch.Tensor,
|
158 |
+
initial_state: torch.Tensor = None,
|
159 |
+
output_final_state: bool = False,
|
160 |
+
offsets: Optional[torch.LongTensor] = None,
|
161 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
162 |
+
B, T, D = x.shape
|
163 |
+
N = B if offsets is None else len(offsets) - 1
|
164 |
+
|
165 |
+
o = torch.empty_like(x)
|
166 |
+
final_state = x.new_empty(N, D) if output_final_state else None
|
167 |
+
|
168 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
169 |
+
fused_recurrent_hgrn_fwd_kernel[grid](
|
170 |
+
x=x,
|
171 |
+
g=g,
|
172 |
+
o=o,
|
173 |
+
h0=initial_state,
|
174 |
+
ht=final_state,
|
175 |
+
offsets=offsets,
|
176 |
+
T=T,
|
177 |
+
D=D
|
178 |
+
)
|
179 |
+
return o, final_state
|
180 |
+
|
181 |
+
|
182 |
+
def fused_recurrent_hgrn_bwd(
|
183 |
+
g: torch.Tensor,
|
184 |
+
o: torch.Tensor,
|
185 |
+
do: torch.Tensor,
|
186 |
+
dht: torch.Tensor = None,
|
187 |
+
initial_state: torch.Tensor = None,
|
188 |
+
offsets: Optional[torch.LongTensor] = None
|
189 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
190 |
+
B, T, D = do.shape
|
191 |
+
N = B if offsets is None else len(offsets) - 1
|
192 |
+
|
193 |
+
dx = torch.empty_like(o, dtype=torch.float)
|
194 |
+
dg = torch.empty_like(g, dtype=torch.float)
|
195 |
+
dh0 = torch.empty_like(initial_state, dtype=torch.float) if initial_state is not None else None
|
196 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
197 |
+
fused_recurrent_hgrn_bwd_kernel[grid](
|
198 |
+
g=g,
|
199 |
+
o=o,
|
200 |
+
h0=initial_state,
|
201 |
+
dx=dx,
|
202 |
+
dg=dg,
|
203 |
+
do=do,
|
204 |
+
dht=dht,
|
205 |
+
dh0=dh0,
|
206 |
+
offsets=offsets,
|
207 |
+
T=T,
|
208 |
+
D=D
|
209 |
+
)
|
210 |
+
return dx, dg, dh0
|
211 |
+
|
212 |
+
|
213 |
+
class FusedRecurrentHGRNFunction(torch.autograd.Function):
|
214 |
+
|
215 |
+
@staticmethod
|
216 |
+
@input_guard
|
217 |
+
def forward(
|
218 |
+
ctx,
|
219 |
+
x: torch.Tensor,
|
220 |
+
g: torch.Tensor,
|
221 |
+
initial_state: torch.Tensor = None,
|
222 |
+
output_final_state: bool = False,
|
223 |
+
offsets: Optional[torch.LongTensor] = None
|
224 |
+
):
|
225 |
+
o, ht = fused_recurrent_hgrn_fwd(
|
226 |
+
x=x,
|
227 |
+
g=g,
|
228 |
+
initial_state=initial_state,
|
229 |
+
output_final_state=output_final_state,
|
230 |
+
offsets=offsets
|
231 |
+
)
|
232 |
+
ctx.save_for_backward(g, o, initial_state)
|
233 |
+
ctx.offsets = offsets
|
234 |
+
return o, ht
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
@input_guard
|
238 |
+
def backward(ctx, do, dht=None):
|
239 |
+
g, o, initial_state = ctx.saved_tensors
|
240 |
+
offsets = ctx.offsets
|
241 |
+
|
242 |
+
dx, dg, dh0 = fused_recurrent_hgrn_bwd(
|
243 |
+
g=g,
|
244 |
+
o=o,
|
245 |
+
do=do,
|
246 |
+
dht=dht,
|
247 |
+
initial_state=initial_state,
|
248 |
+
offsets=offsets
|
249 |
+
)
|
250 |
+
return dx, dg, dh0, None, None
|
251 |
+
|
252 |
+
|
253 |
+
@torch.compiler.disable
|
254 |
+
def fused_recurrent_hgrn(
|
255 |
+
x: torch.Tensor,
|
256 |
+
g: torch.Tensor,
|
257 |
+
initial_state: torch.Tensor = None,
|
258 |
+
output_final_state: bool = False,
|
259 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
260 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
261 |
+
r"""
|
262 |
+
Args:
|
263 |
+
x (torch.Tensor):
|
264 |
+
inputs of shape `[B, T, D].
|
265 |
+
g (torch.Tensor):
|
266 |
+
Forget gates of shape `[B, T, D]`.
|
267 |
+
initial_state (Optional[torch.Tensor]):
|
268 |
+
Initial state of shape `[N, D]` for `N` input sequences.
|
269 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
270 |
+
Default: `None`.
|
271 |
+
output_final_state (Optional[bool]):
|
272 |
+
Whether to output the final state of shape `[N, D]`. Default: `False`.
|
273 |
+
cu_seqlens (torch.LongTensor):
|
274 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
275 |
+
consistent with the FlashAttention API.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
o (torch.Tensor):
|
279 |
+
Outputs of shape `[B, T, D]`.
|
280 |
+
final_state (torch.Tensor):
|
281 |
+
Final state of shape `[N, D]` if `output_final_state=True` else `None`.
|
282 |
+
|
283 |
+
Examples::
|
284 |
+
>>> import torch
|
285 |
+
>>> import torch.nn.functional as F
|
286 |
+
>>> from einops import rearrange
|
287 |
+
>>> from fla.ops.hgrn import fused_recurrent_hgrn
|
288 |
+
# inputs with equal lengths
|
289 |
+
>>> B, T, D = 4, 2048, 512
|
290 |
+
>>> x = torch.randn(B, T, D, device='cuda')
|
291 |
+
>>> g = F.logsigmoid(torch.randn(B, T, D, device='cuda'))
|
292 |
+
>>> h0 = torch.randn(B, D, device='cuda')
|
293 |
+
>>> o, ht = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True)
|
294 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
295 |
+
>>> x, g = map(lambda x: rearrange(x, 'b t d -> 1 (b t) d'), (x, g))
|
296 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
297 |
+
>>> cu_seqlens = x.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
298 |
+
>>> o_var, ht_var = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True, cu_seqlens=cu_seqlens)
|
299 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
300 |
+
>>> assert ht.allclose(ht_var)
|
301 |
+
"""
|
302 |
+
return FusedRecurrentHGRNFunction.apply(
|
303 |
+
x,
|
304 |
+
g,
|
305 |
+
initial_state,
|
306 |
+
output_final_state,
|
307 |
+
cu_seqlens
|
308 |
+
)
|
fla/ops/hgrn/naive.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
def naive_recurrent_hgrn(
|
9 |
+
x: torch.Tensor,
|
10 |
+
g: torch.Tensor,
|
11 |
+
initial_state: Optional[torch.Tensor] = None,
|
12 |
+
output_final_state: Optional[bool] = False
|
13 |
+
) -> torch.Tensor:
|
14 |
+
dtype = x.dtype
|
15 |
+
x, g = map(lambda i: i.float(), (x, g))
|
16 |
+
B, T, D = x.shape
|
17 |
+
|
18 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
19 |
+
o = torch.zeros_like(x)
|
20 |
+
|
21 |
+
final_state = None
|
22 |
+
if initial_state is not None:
|
23 |
+
h += initial_state
|
24 |
+
|
25 |
+
for i in range(T):
|
26 |
+
h = g[:, i].exp() * h + x[:, i]
|
27 |
+
o[:, i] = h
|
28 |
+
|
29 |
+
if output_final_state:
|
30 |
+
final_state = h
|
31 |
+
return o.to(dtype), final_state
|
32 |
+
|
33 |
+
|
34 |
+
def naive_chunk_hgrn(
|
35 |
+
x: torch.Tensor,
|
36 |
+
g: torch.Tensor,
|
37 |
+
initial_state: Optional[torch.Tensor] = None,
|
38 |
+
output_final_state: Optional[bool] = False,
|
39 |
+
chunk_size: int = 64
|
40 |
+
) -> torch.Tensor:
|
41 |
+
dtype = x.dtype
|
42 |
+
x, g = map(lambda i: i.float(), (x, g))
|
43 |
+
B, T, D = x.shape
|
44 |
+
|
45 |
+
gc = g.view(B, chunk_size, D).cumsum(-2).view_as(g)
|
46 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
47 |
+
o = torch.zeros_like(x)
|
48 |
+
|
49 |
+
final_state = None
|
50 |
+
if initial_state is not None:
|
51 |
+
h += initial_state
|
52 |
+
|
53 |
+
for i in range(0, T, chunk_size):
|
54 |
+
hp = h
|
55 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
56 |
+
for j in range(i, i + chunk_size):
|
57 |
+
h = g[:, j].exp() * h + x[:, j]
|
58 |
+
o[:, j] = hp * gc[:, j].exp() + h
|
59 |
+
h = o[:, j].clone()
|
60 |
+
|
61 |
+
if output_final_state:
|
62 |
+
final_state = h
|
63 |
+
return o.to(dtype), final_state
|
fla/ops/lightning_attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (352 Bytes). View file
|
|
fla/ops/lightning_attn/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (3.8 kB). View file
|
|
fla/ops/lightning_attn/chunk.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from fla.ops.simple_gla.chunk import chunk_simple_gla
|
9 |
+
|
10 |
+
|
11 |
+
@torch.compiler.disable
|
12 |
+
def chunk_lightning_attn(
|
13 |
+
q: torch.Tensor,
|
14 |
+
k: torch.Tensor,
|
15 |
+
v: torch.Tensor,
|
16 |
+
layer_idx: int,
|
17 |
+
num_layers: int,
|
18 |
+
scale: Optional[float] = None,
|
19 |
+
initial_state: Optional[torch.Tensor] = None,
|
20 |
+
output_final_state: bool = False,
|
21 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
22 |
+
head_first: bool = True
|
23 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
24 |
+
r"""
|
25 |
+
Args:
|
26 |
+
q (torch.Tensor):
|
27 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
28 |
+
k (torch.Tensor):
|
29 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
30 |
+
v (torch.Tensor):
|
31 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
32 |
+
layer_idx (int):
|
33 |
+
The index of the current layer.
|
34 |
+
num_layers (int):
|
35 |
+
The total number of layers. Both `layer_idx` and `num_layers` are used to compute the decay factor.
|
36 |
+
scale (Optional[int]):
|
37 |
+
Scale factor for the attention scores.
|
38 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
39 |
+
initial_state (Optional[torch.Tensor]):
|
40 |
+
Initial state of shape `[N, H, K, V]` for `N` input sequences.
|
41 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
42 |
+
Default: `None`.
|
43 |
+
output_final_state (Optional[bool]):
|
44 |
+
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
|
45 |
+
cu_seqlens (torch.LongTensor):
|
46 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
47 |
+
consistent with the FlashAttention API.
|
48 |
+
head_first (Optional[bool]):
|
49 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
50 |
+
Default: `True`.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
o (torch.Tensor):
|
54 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
55 |
+
final_state (torch.Tensor):
|
56 |
+
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
|
57 |
+
"""
|
58 |
+
H = q.shape[1] if head_first else q.shape[2]
|
59 |
+
s = -(8 / H * (1 - layer_idx / num_layers)) * q.new_tensor(range(H), dtype=torch.float)
|
60 |
+
if head_first:
|
61 |
+
g = s[None, :, None].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
62 |
+
else:
|
63 |
+
g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
64 |
+
return chunk_simple_gla(
|
65 |
+
q=q,
|
66 |
+
k=k,
|
67 |
+
v=v,
|
68 |
+
scale=scale,
|
69 |
+
g=g,
|
70 |
+
initial_state=initial_state,
|
71 |
+
output_final_state=output_final_state,
|
72 |
+
head_first=head_first,
|
73 |
+
cu_seqlens=cu_seqlens
|
74 |
+
)
|
fla/ops/lightning_attn/fused_recurrent.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from fla.ops.simple_gla.fused_recurrent import fused_recurrent_simple_gla
|
9 |
+
|
10 |
+
|
11 |
+
def fused_recurrent_lightning_attn(
|
12 |
+
q: torch.Tensor,
|
13 |
+
k: torch.Tensor,
|
14 |
+
v: torch.Tensor,
|
15 |
+
layer_idx: int,
|
16 |
+
num_layers: int,
|
17 |
+
scale: Optional[float] = None,
|
18 |
+
initial_state: Optional[torch.Tensor] = None,
|
19 |
+
output_final_state: bool = False,
|
20 |
+
reverse: bool = False,
|
21 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
22 |
+
head_first: bool = True
|
23 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
24 |
+
r"""
|
25 |
+
Args:
|
26 |
+
q (torch.Tensor):
|
27 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
28 |
+
k (torch.Tensor):
|
29 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
30 |
+
v (torch.Tensor):
|
31 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
32 |
+
layer_idx (int):
|
33 |
+
The index of the current layer.
|
34 |
+
num_layers (int):
|
35 |
+
The total number of layers. Both `layer_idx` and `num_layers` are used to compute the decay factor.
|
36 |
+
scale (Optional[int]):
|
37 |
+
Scale factor for the attention scores.
|
38 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
39 |
+
initial_state (Optional[torch.Tensor]):
|
40 |
+
Initial state of shape `[N, H, K, V]` for `N` input sequences.
|
41 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
42 |
+
Default: `None`.
|
43 |
+
output_final_state (Optional[bool]):
|
44 |
+
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
|
45 |
+
cu_seqlens (torch.LongTensor):
|
46 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
47 |
+
consistent with the FlashAttention API.
|
48 |
+
head_first (Optional[bool]):
|
49 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
50 |
+
Default: `True`.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
o (torch.Tensor):
|
54 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
55 |
+
final_state (torch.Tensor):
|
56 |
+
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
|
57 |
+
"""
|
58 |
+
H = q.shape[1] if head_first else q.shape[2]
|
59 |
+
s = -(8 / H * (1 - layer_idx / num_layers)) * q.new_tensor(range(H), dtype=torch.float)
|
60 |
+
if head_first:
|
61 |
+
g = s[None, :, None].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
62 |
+
else:
|
63 |
+
g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
64 |
+
return fused_recurrent_simple_gla(
|
65 |
+
q=q,
|
66 |
+
k=k,
|
67 |
+
v=v,
|
68 |
+
g=g,
|
69 |
+
scale=scale,
|
70 |
+
initial_state=initial_state,
|
71 |
+
output_final_state=output_final_state,
|
72 |
+
reverse=reverse,
|
73 |
+
cu_seqlens=cu_seqlens,
|
74 |
+
head_first=head_first
|
75 |
+
)
|
fla/ops/linear_attn/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_linear_attn
|
4 |
+
from .fused_chunk import fused_chunk_linear_attn
|
5 |
+
from .fused_recurrent import fused_recurrent_linear_attn
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'chunk_linear_attn',
|
9 |
+
'fused_chunk_linear_attn',
|
10 |
+
'fused_recurrent_linear_attn'
|
11 |
+
]
|
fla/ops/linear_attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (427 Bytes). View file
|
|
fla/ops/linear_attn/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (2.62 kB). View file
|
|
fla/ops/linear_attn/__pycache__/fused_chunk.cpython-311.pyc
ADDED
Binary file (18.8 kB). View file
|
|
fla/ops/linear_attn/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (583 Bytes). View file
|
|
fla/ops/linear_attn/fused_chunk.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
from fla.ops.linear_attn.utils import normalize_output
|
12 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
13 |
+
|
14 |
+
|
15 |
+
@triton.jit
|
16 |
+
def fused_chunk_linear_attn_fwd_kernel(
|
17 |
+
q, # query [B, H, T, K]
|
18 |
+
k, # key [B, H, T, V]
|
19 |
+
v, # value [B, H, T, V]
|
20 |
+
o, # output [B, H, T, V]
|
21 |
+
h0,
|
22 |
+
ht,
|
23 |
+
scale,
|
24 |
+
B, # batch size
|
25 |
+
H, # H
|
26 |
+
T, # T
|
27 |
+
K: tl.constexpr, # K
|
28 |
+
V: tl.constexpr, # V
|
29 |
+
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
30 |
+
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
31 |
+
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
32 |
+
USE_INITIAL_STATE: tl.constexpr,
|
33 |
+
STORE_FINAL_STATE: tl.constexpr,
|
34 |
+
CHECK: tl.constexpr
|
35 |
+
):
|
36 |
+
# indices
|
37 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
38 |
+
|
39 |
+
o_i = tl.arange(0, BT)
|
40 |
+
|
41 |
+
# [BT, BT]
|
42 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
43 |
+
# [BK, BV]
|
44 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
45 |
+
|
46 |
+
# make block pointers
|
47 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0))
|
48 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1))
|
49 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
50 |
+
p_o = tl.make_block_ptr(o + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
51 |
+
|
52 |
+
if USE_INITIAL_STATE:
|
53 |
+
p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
54 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
55 |
+
|
56 |
+
for i in range(0, tl.cdiv(T, BT)):
|
57 |
+
# [BT, BK]
|
58 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
59 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
60 |
+
# [BK, BT]
|
61 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
62 |
+
# [BT, BV]
|
63 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
64 |
+
|
65 |
+
# [BT, BT]
|
66 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
67 |
+
b_s = tl.where(m_s, b_s, 0)
|
68 |
+
# [BT, BV]
|
69 |
+
b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
70 |
+
if CHECK and i == 0:
|
71 |
+
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
|
72 |
+
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
|
73 |
+
else:
|
74 |
+
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
|
75 |
+
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
|
76 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
77 |
+
p_q = tl.advance(p_q, (BT, 0))
|
78 |
+
p_k = tl.advance(p_k, (0, BT))
|
79 |
+
p_v = tl.advance(p_v, (BT, 0))
|
80 |
+
p_o = tl.advance(p_o, (BT, 0))
|
81 |
+
|
82 |
+
if STORE_FINAL_STATE:
|
83 |
+
p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
84 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
85 |
+
|
86 |
+
|
87 |
+
@triton.jit
|
88 |
+
def fused_chunk_linear_attn_bwd_kernel(
|
89 |
+
q, # query [B, H, T, K]
|
90 |
+
k, # key [B, H, T, V]
|
91 |
+
v, # value [B, H, T, V]
|
92 |
+
do, # gradient of output [B, H, T, V]
|
93 |
+
dq, # gradient of query [NV, B, H, T, K]
|
94 |
+
dk, # gradient of key [NV, B, H, T, K]
|
95 |
+
dv, # gradient of value [NK, B, H, T, V]
|
96 |
+
h0, # initial state of the chunk [B, H, K, V]
|
97 |
+
scale, # K ** -0.5
|
98 |
+
B, # B
|
99 |
+
H, # H
|
100 |
+
T, # T
|
101 |
+
K: tl.constexpr, # K
|
102 |
+
V: tl.constexpr, # V
|
103 |
+
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
104 |
+
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
105 |
+
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
106 |
+
USE_INITIAL_STATE: tl.constexpr,
|
107 |
+
CHECK: tl.constexpr
|
108 |
+
):
|
109 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
110 |
+
o_i = tl.arange(0, BT)
|
111 |
+
|
112 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
113 |
+
# [BV, BK]
|
114 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
115 |
+
if USE_INITIAL_STATE:
|
116 |
+
p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
117 |
+
b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
118 |
+
|
119 |
+
for i in range(0, tl.cdiv(T, BT)):
|
120 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
121 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1))
|
122 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0))
|
123 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * T*K, (T, K), (K, 1), (i*BT, i_k*BK), (BT, BK), (1, 0))
|
124 |
+
|
125 |
+
# [BT, BK]
|
126 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
127 |
+
# [V, BT]
|
128 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
129 |
+
# [BT, V]
|
130 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
131 |
+
|
132 |
+
# [BT, BT]
|
133 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
134 |
+
b_ds = tl.where(m_s, b_ds, 0)
|
135 |
+
# [BT, BK]
|
136 |
+
b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False)
|
137 |
+
# [BV, BK]
|
138 |
+
if CHECK and i == 0:
|
139 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
140 |
+
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
|
141 |
+
else:
|
142 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
143 |
+
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
|
144 |
+
b_dq *= scale
|
145 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
146 |
+
|
147 |
+
# sync threads
|
148 |
+
b_h = None
|
149 |
+
tl.debug_barrier()
|
150 |
+
# [BK, BV]
|
151 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
152 |
+
m_s = o_i[:, None] <= o_i[None, :]
|
153 |
+
for i in range(1, tl.cdiv(T, BT) + 1):
|
154 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, T - i * BT), (BK, BT), (0, 1))
|
155 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
|
156 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
157 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
158 |
+
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * T*K, (T, K), (K, 1), (T - i*BT, i_k*BK), (BT, BK), (1, 0))
|
159 |
+
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (T - i*BT, i_v*BV), (BT, BV), (1, 0))
|
160 |
+
# [BK, BT]
|
161 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
162 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
163 |
+
# [BT, BK]
|
164 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
165 |
+
# [BT, BV]
|
166 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
167 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
168 |
+
|
169 |
+
# [BT, BT]
|
170 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False)
|
171 |
+
b_s = tl.where(m_s, b_s, 0).to(b_q.dtype)
|
172 |
+
# [BT, BT]
|
173 |
+
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
|
174 |
+
b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype)
|
175 |
+
# [BT, BK]
|
176 |
+
b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False)
|
177 |
+
# [BT, BV]
|
178 |
+
b_dv = tl.dot(b_s, b_do, allow_tf32=False)
|
179 |
+
if CHECK and i == 1:
|
180 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
|
181 |
+
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
182 |
+
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
|
183 |
+
else:
|
184 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
|
185 |
+
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
186 |
+
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
|
187 |
+
|
188 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
189 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
190 |
+
|
191 |
+
|
192 |
+
class FusedChunkLinearAttentionFunction(torch.autograd.Function):
|
193 |
+
|
194 |
+
@staticmethod
|
195 |
+
@input_guard
|
196 |
+
@autocast_custom_fwd
|
197 |
+
def forward(ctx, q, k, v, scale, initial_state, output_final_state):
|
198 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
199 |
+
BT = 64
|
200 |
+
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
|
201 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
202 |
+
num_warps = 4
|
203 |
+
num_stages = 1
|
204 |
+
|
205 |
+
o = q.new_empty(NK, B, H, T, V)
|
206 |
+
final_state = q.new_empty(B, H, K, V, dtype=torch.float) if output_final_state else None
|
207 |
+
# the bug still exists even for Triton 2.2 on H100 GPUs
|
208 |
+
# so we always enable initial checks
|
209 |
+
CHECK = True
|
210 |
+
if version.parse(triton.__version__) < version.parse('2.2.0'):
|
211 |
+
import warnings
|
212 |
+
warnings.warn(
|
213 |
+
"Triton<2.2.0 detected for running this kernel, "
|
214 |
+
"which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) "
|
215 |
+
"that lead to significant precision loss. "
|
216 |
+
"We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. "
|
217 |
+
"For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)."
|
218 |
+
)
|
219 |
+
CHECK = True
|
220 |
+
|
221 |
+
grid = (NV, NK, B * H)
|
222 |
+
fused_chunk_linear_attn_fwd_kernel[grid](
|
223 |
+
q, k, v, o, initial_state, final_state,
|
224 |
+
scale,
|
225 |
+
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
226 |
+
USE_INITIAL_STATE=initial_state is not None,
|
227 |
+
STORE_FINAL_STATE=output_final_state,
|
228 |
+
CHECK=CHECK,
|
229 |
+
num_warps=num_warps,
|
230 |
+
num_stages=num_stages
|
231 |
+
)
|
232 |
+
o = o.sum(0) if NK > 1 else o[0]
|
233 |
+
|
234 |
+
ctx.save_for_backward(q, k, v, initial_state)
|
235 |
+
ctx.scale = scale
|
236 |
+
ctx.CHECK = CHECK
|
237 |
+
return o.to(q.dtype), final_state
|
238 |
+
|
239 |
+
@staticmethod
|
240 |
+
@input_guard
|
241 |
+
@autocast_custom_bwd
|
242 |
+
def backward(ctx, do, dht=None):
|
243 |
+
q, k, v, initial_state = ctx.saved_tensors
|
244 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
245 |
+
scale = ctx.scale
|
246 |
+
|
247 |
+
BT = 64
|
248 |
+
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
|
249 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
250 |
+
num_warps = 4
|
251 |
+
num_stages = 1
|
252 |
+
|
253 |
+
dq = q.new_empty(NV, B, H, T, K)
|
254 |
+
dk = q.new_empty(NV, B, H, T, K)
|
255 |
+
dv = q.new_empty(NK, B, H, T, V)
|
256 |
+
grid = (NV, NK, B * H)
|
257 |
+
|
258 |
+
fused_chunk_linear_attn_bwd_kernel[grid](
|
259 |
+
q, k, v, do, dq, dk, dv, initial_state,
|
260 |
+
scale,
|
261 |
+
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
262 |
+
USE_INITIAL_STATE=initial_state is not None,
|
263 |
+
CHECK=ctx.CHECK,
|
264 |
+
num_warps=num_warps,
|
265 |
+
num_stages=num_stages
|
266 |
+
)
|
267 |
+
dq = dq.sum(0)
|
268 |
+
dk = dk.sum(0)
|
269 |
+
dv = dv.sum(0)
|
270 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None
|
271 |
+
|
272 |
+
|
273 |
+
def fused_chunk_linear_attn(
|
274 |
+
q: torch.Tensor,
|
275 |
+
k: torch.Tensor,
|
276 |
+
v: torch.Tensor,
|
277 |
+
scale: Optional[float] = None,
|
278 |
+
initial_state: torch.Tensor = None,
|
279 |
+
output_final_state: bool = False,
|
280 |
+
normalize: bool = True,
|
281 |
+
head_first: bool = True
|
282 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
283 |
+
r"""
|
284 |
+
Args:
|
285 |
+
q (torch.Tensor):
|
286 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
|
287 |
+
k (torch.Tensor):
|
288 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
|
289 |
+
v (torch.Tensor):
|
290 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
|
291 |
+
scale (Optional[int]):
|
292 |
+
Scale factor for linear attention scores.
|
293 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
294 |
+
initial_state (Optional[torch.Tensor]):
|
295 |
+
Initial state of shape `[B, H, K, V]`. Default: `None`.
|
296 |
+
output_final_state (Optional[bool]):
|
297 |
+
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
|
298 |
+
normalize (bool):
|
299 |
+
Whether to normalize the output. Default: `True`.
|
300 |
+
head_first (Optional[bool]):
|
301 |
+
Whether the inputs are in the head-first format. Default: `True`.
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
o (torch.Tensor):
|
305 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
|
306 |
+
final_state (torch.Tensor):
|
307 |
+
Final state of shape `[B, H, K, V]` if `output_final_state=True` else `None`
|
308 |
+
"""
|
309 |
+
if scale is None:
|
310 |
+
scale = q.shape[-1] ** -0.5
|
311 |
+
if not head_first:
|
312 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
313 |
+
o, final_state = FusedChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state)
|
314 |
+
if normalize:
|
315 |
+
o = normalize_output(q * scale, k, o)
|
316 |
+
if not head_first:
|
317 |
+
o = o.transpose(1, 2)
|
318 |
+
return o, final_state
|
fla/ops/nsa/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .naive import naive_nsa
|
4 |
+
from .parallel import parallel_nsa
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'naive_nsa',
|
8 |
+
'parallel_nsa'
|
9 |
+
]
|
fla/ops/nsa/__pycache__/naive.cpython-311.pyc
ADDED
Binary file (6.28 kB). View file
|
|
fla/ops/nsa/__pycache__/parallel.cpython-311.pyc
ADDED
Binary file (70.1 kB). View file
|
|
fla/ops/nsa/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (4.99 kB). View file
|
|
fla/ops/nsa/naive.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
|
9 |
+
|
10 |
+
def naive_nsa(
|
11 |
+
q: torch.Tensor,
|
12 |
+
k: torch.Tensor,
|
13 |
+
v: torch.Tensor,
|
14 |
+
indices: torch.LongTensor,
|
15 |
+
block_size: int = 64,
|
16 |
+
scale: Optional[float] = None,
|
17 |
+
head_first: bool = False,
|
18 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
19 |
+
) -> torch.Tensor:
|
20 |
+
r"""
|
21 |
+
Args:
|
22 |
+
q (torch.Tensor):
|
23 |
+
queries of shape `[B, HQ, T, K]` if `head_first=True` else `[B, T, HQ, K]`.
|
24 |
+
k (torch.Tensor):
|
25 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
26 |
+
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
|
27 |
+
v (torch.Tensor):
|
28 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
29 |
+
indices (torch.LongTensor):
|
30 |
+
Block indices of shape `[B, T, H, S]` if `head_first=True` else `[B, T, H, S]`.
|
31 |
+
`S` is the number of selected blocks for each query token, which is set to 16 in the paper.
|
32 |
+
block_size (int):
|
33 |
+
Selected block size. Default: 64.
|
34 |
+
scale (Optional[int]):
|
35 |
+
Scale factor for attention scores.
|
36 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
37 |
+
head_first (Optional[bool]):
|
38 |
+
Whether the inputs are in the head-first format. Default: `False`.
|
39 |
+
cu_seqlens (torch.LongTensor):
|
40 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
41 |
+
consistent with the FlashAttention API.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
o (torch.Tensor):
|
45 |
+
Outputs of shape `[B, HQ, T, V]` if `head_first=True` else `[B, T, HQ, V]`.
|
46 |
+
"""
|
47 |
+
if scale is None:
|
48 |
+
scale = k.shape[-1] ** -0.5
|
49 |
+
if cu_seqlens is not None:
|
50 |
+
if head_first:
|
51 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
52 |
+
if head_first:
|
53 |
+
q, k, v, indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v, indices))
|
54 |
+
|
55 |
+
dtype = q.dtype
|
56 |
+
G = q.shape[2] // k.shape[2]
|
57 |
+
BS = block_size
|
58 |
+
k, v, indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, indices))
|
59 |
+
q, k, v = map(lambda x: x.float(), (q, k, v))
|
60 |
+
|
61 |
+
o = torch.zeros_like(v)
|
62 |
+
varlen = True
|
63 |
+
if cu_seqlens is None:
|
64 |
+
varlen = False
|
65 |
+
B, T = q.shape[:2]
|
66 |
+
cu_seqlens = torch.cat([indices.new_tensor(range(0, B*T, T)), indices.new_tensor([B*T])])
|
67 |
+
|
68 |
+
for i in range(len(cu_seqlens) - 1):
|
69 |
+
if not varlen:
|
70 |
+
q_b, k_b, v_b, i_b = q[i], k[i], v[i], indices[i]
|
71 |
+
else:
|
72 |
+
T = cu_seqlens[i+1] - cu_seqlens[i]
|
73 |
+
q_b, k_b, v_b, i_b = map(lambda x: x[0][cu_seqlens[i]:cu_seqlens[i+1]], (q, k, v, indices))
|
74 |
+
|
75 |
+
i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
|
76 |
+
# [T, S*BS, HQ]
|
77 |
+
i_b = i_b.view(T, indices.shape[2], -1).transpose(1, 2)
|
78 |
+
for i_q in range(T):
|
79 |
+
# [HQ, D]
|
80 |
+
q_i = q_b[i_q] * scale
|
81 |
+
# [S*BS, HQ]
|
82 |
+
i_i = i_b[i_q]
|
83 |
+
# [S*BS, HQ, -1]
|
84 |
+
k_i, v_i = map(lambda x: x.gather(0, i_i.clamp(0, T-1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b))
|
85 |
+
# [S*BS, HQ]
|
86 |
+
attn = torch.einsum('h d, n h d -> n h', q_i, k_i).masked_fill(i_i > i_q, float('-inf')).softmax(0)
|
87 |
+
if not varlen:
|
88 |
+
o[i, i_q] = torch.einsum('n h, n h v -> h v', attn, v_i)
|
89 |
+
else:
|
90 |
+
o[0][cu_seqlens[i]+i_q] = torch.einsum('n h, n h v -> h v', attn, v_i)
|
91 |
+
|
92 |
+
if head_first:
|
93 |
+
o = rearrange(o, 'b t h d -> b h t d')
|
94 |
+
return o.to(dtype)
|
fla/ops/rebased/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (248 Bytes). View file
|
|
fla/ops/rebased/parallel.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import triton
|
7 |
+
import triton.language as tl
|
8 |
+
|
9 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
10 |
+
|
11 |
+
# Rebased: Linear Transformers with Learnable Kernel Functions are Better In-Context Models
|
12 |
+
# https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/ops/triton/rebased_fast/parallel.py
|
13 |
+
|
14 |
+
|
15 |
+
@triton.jit(do_not_specialize=['T'])
|
16 |
+
def parallel_rebased_fwd_kernel(
|
17 |
+
q,
|
18 |
+
k,
|
19 |
+
v,
|
20 |
+
o,
|
21 |
+
z,
|
22 |
+
scale,
|
23 |
+
T,
|
24 |
+
B: tl.constexpr,
|
25 |
+
H: tl.constexpr,
|
26 |
+
K: tl.constexpr,
|
27 |
+
V: tl.constexpr,
|
28 |
+
BTL: tl.constexpr,
|
29 |
+
BTS: tl.constexpr,
|
30 |
+
BK: tl.constexpr,
|
31 |
+
BV: tl.constexpr,
|
32 |
+
):
|
33 |
+
# i_c: chunk index. used for sequence parallelism
|
34 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
35 |
+
NV = tl.cdiv(V, BV)
|
36 |
+
i_k = i_kv // (NV)
|
37 |
+
i_v = i_kv % (NV)
|
38 |
+
|
39 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
40 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k*BK, 0), (BK, BTS), (0, 1))
|
41 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v*BV), (BTS, BV), (1, 0))
|
42 |
+
|
43 |
+
# [BQ, BD] block Q, in the shared memory throughout the whole kernel
|
44 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
45 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
46 |
+
b_o = tl.zeros([BTL, BV], dtype=tl.float32)
|
47 |
+
b_z = tl.zeros([BTL], dtype=tl.float32)
|
48 |
+
|
49 |
+
# Q block and K block have no overlap
|
50 |
+
# no need for mask, thereby saving flops
|
51 |
+
for _ in range(0, i_c*BTL, BTS):
|
52 |
+
# [BK, BTS]
|
53 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
54 |
+
|
55 |
+
# [BTS, BV]
|
56 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
57 |
+
# [BTL, BTS]
|
58 |
+
b_s = tl.dot(b_q, (b_k), allow_tf32=False)
|
59 |
+
b_s = b_s * b_s
|
60 |
+
b_z += tl.sum(b_s, axis=1)
|
61 |
+
|
62 |
+
# [BQ, BD]
|
63 |
+
b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)
|
64 |
+
p_k = tl.advance(p_k, (0, BTS))
|
65 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
66 |
+
|
67 |
+
# # rescale interchunk output
|
68 |
+
tl.debug_barrier()
|
69 |
+
o_q = tl.arange(0, BTL)
|
70 |
+
# # sync threads, easy for compiler to optimize
|
71 |
+
# tl.debug_barrier()
|
72 |
+
|
73 |
+
o_k = tl.arange(0, BTS)
|
74 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k*BK, i_c*BTL), (BK, BTS), (0, 1))
|
75 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTS, BV), (1, 0))
|
76 |
+
# Q block and K block have overlap. masks required
|
77 |
+
for _ in range(i_c*BTL, (i_c + 1) * BTL, BTS):
|
78 |
+
# [BK, BTS]
|
79 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
80 |
+
# [BTS, BV]
|
81 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
82 |
+
# [BTL, BTS]
|
83 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
84 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
85 |
+
b_s = b_s * b_s
|
86 |
+
b_s = tl.where(m_s, b_s, 0)
|
87 |
+
b_z += tl.sum(b_s, axis=1)
|
88 |
+
# [BTL, BV]
|
89 |
+
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
90 |
+
p_k = tl.advance(p_k, (0, BTS))
|
91 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
92 |
+
o_k += BTS
|
93 |
+
|
94 |
+
p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
95 |
+
p_z = z + (i_bh + B * H * i_k) * T + i_c*BTL + tl.arange(0, BTL)
|
96 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
97 |
+
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=((i_c*BTL + tl.arange(0, BTL)) < T))
|
98 |
+
|
99 |
+
|
100 |
+
@triton.jit(do_not_specialize=['T'])
|
101 |
+
def _parallel_rebased_bwd_dq(
|
102 |
+
i_bh,
|
103 |
+
i_c,
|
104 |
+
i_k,
|
105 |
+
i_v,
|
106 |
+
i_h,
|
107 |
+
q,
|
108 |
+
k,
|
109 |
+
v,
|
110 |
+
do,
|
111 |
+
dz,
|
112 |
+
dq,
|
113 |
+
scale,
|
114 |
+
T,
|
115 |
+
B: tl.constexpr,
|
116 |
+
H: tl.constexpr,
|
117 |
+
K: tl.constexpr,
|
118 |
+
V: tl.constexpr,
|
119 |
+
BTL: tl.constexpr,
|
120 |
+
BTS: tl.constexpr,
|
121 |
+
BK: tl.constexpr,
|
122 |
+
BV: tl.constexpr
|
123 |
+
):
|
124 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
125 |
+
p_q = tl.make_block_ptr(q + (i_bh) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
126 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
127 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
128 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
129 |
+
b_dq = tl.zeros([BTL, BK], dtype=tl.float32)
|
130 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (0, i_k*BK), (BTS, BK), (1, 0))
|
131 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v*BV, 0), (BV, BTS), (0, 1))
|
132 |
+
p_dz = dz + i_bh * T + i_c*BTL + tl.arange(0, BTL)
|
133 |
+
b_dz = tl.load(p_dz, mask=(i_c*BTL + tl.arange(0, BTL)) < T)
|
134 |
+
|
135 |
+
for _ in range(0, i_c*BTL, BTS):
|
136 |
+
# [BTS, BK]
|
137 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
138 |
+
# [BV, BTS]
|
139 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
140 |
+
# [BTL, BTS]
|
141 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
142 |
+
if i_v == 0:
|
143 |
+
b_ds += b_dz[:, None]
|
144 |
+
else:
|
145 |
+
b_ds = b_ds
|
146 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
147 |
+
# [BQ, BD]
|
148 |
+
b_dq += tl.dot((2 * b_ds * b_s).to(b_v.dtype), b_k, allow_tf32=False)
|
149 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
150 |
+
p_v = tl.advance(p_v, (0, BTS))
|
151 |
+
|
152 |
+
b_dq *= scale
|
153 |
+
o_q = tl.arange(0, BTL)
|
154 |
+
o_k = tl.arange(0, BTS)
|
155 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTS, BK), (1, 0))
|
156 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v*BV, i_c*BTL), (BV, BTS), (0, 1))
|
157 |
+
# Q block and K block have overlap. masks required
|
158 |
+
for _ in range(i_c*BTL, (i_c + 1) * BTL, BTS):
|
159 |
+
# [BTS, BK]
|
160 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
161 |
+
# [BV, BTS]
|
162 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
163 |
+
# [BTL, BTS]
|
164 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
165 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
166 |
+
if i_v == 0:
|
167 |
+
b_ds += b_dz[:, None]
|
168 |
+
else:
|
169 |
+
b_ds = b_ds
|
170 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
171 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
172 |
+
b_s = tl.where(m_s, b_s, 0)
|
173 |
+
# [BTL, BK]
|
174 |
+
b_dq += tl.dot((2 * b_ds * b_s).to(b_k.dtype),
|
175 |
+
b_k, allow_tf32=False)
|
176 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
177 |
+
p_v = tl.advance(p_v, (0, BTS))
|
178 |
+
o_k += BTS
|
179 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
180 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
181 |
+
return
|
182 |
+
|
183 |
+
|
184 |
+
@triton.jit(do_not_specialize=['T'])
|
185 |
+
def _parallel_rebased_bwd_dkv(
|
186 |
+
i_bh,
|
187 |
+
i_c,
|
188 |
+
i_k,
|
189 |
+
i_v,
|
190 |
+
i_h,
|
191 |
+
q,
|
192 |
+
k,
|
193 |
+
v,
|
194 |
+
do,
|
195 |
+
dz,
|
196 |
+
dk,
|
197 |
+
dv,
|
198 |
+
scale,
|
199 |
+
T,
|
200 |
+
B: tl.constexpr,
|
201 |
+
H: tl.constexpr,
|
202 |
+
K: tl.constexpr,
|
203 |
+
V: tl.constexpr,
|
204 |
+
BTL: tl.constexpr,
|
205 |
+
BTS: tl.constexpr,
|
206 |
+
BK: tl.constexpr,
|
207 |
+
BV: tl.constexpr,
|
208 |
+
):
|
209 |
+
# compute dk dv
|
210 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
211 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
212 |
+
b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load(p_v, boundary_check=(0, 1))
|
213 |
+
b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros(
|
214 |
+
[BTL, BV], dtype=tl.float32)
|
215 |
+
|
216 |
+
for i in range((tl.cdiv(T, BTS) * BTS)-BTS, (i_c + 1) * BTL - BTS, -BTS):
|
217 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k*BK, i), (BK, BTS), (0, 1))
|
218 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v*BV, i), (BV, BTS), (0, 1))
|
219 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
220 |
+
# [BK, BTS]
|
221 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
222 |
+
# [BV, BTS]
|
223 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
224 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
225 |
+
# [BTL, BTS]
|
226 |
+
b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * scale
|
227 |
+
b_s2 = b_s * b_s
|
228 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
229 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale
|
230 |
+
if i_v == 0:
|
231 |
+
b_ds += b_dz[None, :] * scale
|
232 |
+
else:
|
233 |
+
b_ds = b_ds
|
234 |
+
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
235 |
+
|
236 |
+
tl.debug_barrier()
|
237 |
+
o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL)
|
238 |
+
for i in range(i_c*BTL, (i_c+1)*BTL, BTS):
|
239 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k*BK, i), (BK, BTS), (0, 1))
|
240 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v*BV, i), (BV, BTS), (0, 1))
|
241 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
242 |
+
b_q = tl.load(p_q, boundary_check=(0, 1)) # [BD, BQ]
|
243 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
244 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
245 |
+
# [BK, BQ]
|
246 |
+
m_s = o_k[:, None] <= o_q[None, :]
|
247 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
|
248 |
+
b_s2 = b_s * b_s
|
249 |
+
b_s = tl.where(m_s, b_s, 0)
|
250 |
+
b_s2 = tl.where(m_s, b_s2, 0)
|
251 |
+
|
252 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False)
|
253 |
+
if i_v == 0:
|
254 |
+
b_ds += b_dz[None, :]
|
255 |
+
else:
|
256 |
+
b_ds = b_ds
|
257 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
258 |
+
# [BK, BD]
|
259 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
260 |
+
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
261 |
+
o_q += BTS
|
262 |
+
|
263 |
+
p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
264 |
+
p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
265 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
266 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
267 |
+
return
|
268 |
+
|
269 |
+
|
270 |
+
@triton.jit(do_not_specialize=['T'])
|
271 |
+
def parallel_rebased_bwd_kernel(
|
272 |
+
q,
|
273 |
+
k,
|
274 |
+
v,
|
275 |
+
do,
|
276 |
+
dz,
|
277 |
+
dq,
|
278 |
+
dk,
|
279 |
+
dv,
|
280 |
+
scale,
|
281 |
+
T,
|
282 |
+
B: tl.constexpr,
|
283 |
+
H: tl.constexpr,
|
284 |
+
K: tl.constexpr,
|
285 |
+
V: tl.constexpr,
|
286 |
+
BTL: tl.constexpr,
|
287 |
+
BTS: tl.constexpr,
|
288 |
+
BK: tl.constexpr,
|
289 |
+
BV: tl.constexpr
|
290 |
+
):
|
291 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
292 |
+
NV = tl.cdiv(V, BV)
|
293 |
+
i_k = i_kv // (NV)
|
294 |
+
i_v = i_kv % (NV)
|
295 |
+
i_h = i_bh % H
|
296 |
+
_parallel_rebased_bwd_dq(
|
297 |
+
i_bh,
|
298 |
+
i_c,
|
299 |
+
i_k,
|
300 |
+
i_v,
|
301 |
+
i_h,
|
302 |
+
q,
|
303 |
+
k,
|
304 |
+
v,
|
305 |
+
do,
|
306 |
+
dz,
|
307 |
+
dq,
|
308 |
+
scale,
|
309 |
+
B=B,
|
310 |
+
H=H,
|
311 |
+
T=T,
|
312 |
+
K=K,
|
313 |
+
V=V,
|
314 |
+
BTL=BTL,
|
315 |
+
BTS=BTS,
|
316 |
+
BK=BK,
|
317 |
+
BV=BV
|
318 |
+
)
|
319 |
+
tl.debug_barrier()
|
320 |
+
_parallel_rebased_bwd_dkv(
|
321 |
+
i_bh,
|
322 |
+
i_c,
|
323 |
+
i_k,
|
324 |
+
i_v,
|
325 |
+
i_h,
|
326 |
+
q,
|
327 |
+
k,
|
328 |
+
v,
|
329 |
+
do,
|
330 |
+
dz,
|
331 |
+
dk,
|
332 |
+
dv,
|
333 |
+
scale,
|
334 |
+
B=B,
|
335 |
+
H=H,
|
336 |
+
T=T,
|
337 |
+
K=K,
|
338 |
+
V=V,
|
339 |
+
BTL=BTL,
|
340 |
+
BTS=BTS,
|
341 |
+
BK=BK,
|
342 |
+
BV=BV
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
class ParallelBasedFunction(torch.autograd.Function):
|
347 |
+
|
348 |
+
@staticmethod
|
349 |
+
@input_guard
|
350 |
+
@autocast_custom_fwd
|
351 |
+
def forward(ctx, q, k, v, scale):
|
352 |
+
BTL, BTS = 128, 32
|
353 |
+
assert BTL % BTS == 0
|
354 |
+
# assert q.shape[-1] % 16 == 0
|
355 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
356 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
357 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
358 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
359 |
+
num_stages = 2
|
360 |
+
num_warps = 4
|
361 |
+
NK = triton.cdiv(K, BK)
|
362 |
+
NV = triton.cdiv(V, BV)
|
363 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
364 |
+
|
365 |
+
assert NK == 1, "will encounter some synchronization issue if not."
|
366 |
+
|
367 |
+
o = torch.empty(NK, B, H, T, V, device=q.device)
|
368 |
+
z = torch.empty(NK, B, H, T, device=q.device)
|
369 |
+
parallel_rebased_fwd_kernel[grid](
|
370 |
+
q,
|
371 |
+
k,
|
372 |
+
v,
|
373 |
+
o,
|
374 |
+
z,
|
375 |
+
scale,
|
376 |
+
T=T,
|
377 |
+
B=B,
|
378 |
+
H=H,
|
379 |
+
K=K,
|
380 |
+
V=V,
|
381 |
+
BTL=BTL,
|
382 |
+
BTS=BTS,
|
383 |
+
BK=BK,
|
384 |
+
BV=BV,
|
385 |
+
num_warps=num_warps,
|
386 |
+
num_stages=num_stages
|
387 |
+
)
|
388 |
+
ctx.save_for_backward(q, k, v)
|
389 |
+
ctx.scale = scale
|
390 |
+
return o.sum(0).to(q.dtype), z.sum(0).to(q.dtype)
|
391 |
+
|
392 |
+
@staticmethod
|
393 |
+
@input_guard
|
394 |
+
@autocast_custom_bwd
|
395 |
+
def backward(ctx, do, dz):
|
396 |
+
q, k, v = ctx.saved_tensors
|
397 |
+
scale = ctx.scale
|
398 |
+
BTL, BTS = 64, 32
|
399 |
+
assert BTL % BTS == 0
|
400 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
401 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
402 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
403 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
404 |
+
num_stages = 2
|
405 |
+
num_warps = 4
|
406 |
+
NK = triton.cdiv(K, BK)
|
407 |
+
NV = triton.cdiv(V, BV)
|
408 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
409 |
+
|
410 |
+
assert NK == 1, "will encounter some synchronization issue if not"
|
411 |
+
|
412 |
+
dq = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
413 |
+
dk = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
414 |
+
dv = torch.empty(NK, B, H, T, V, dtype=q.dtype, device=q.device)
|
415 |
+
|
416 |
+
parallel_rebased_bwd_kernel[grid](
|
417 |
+
q,
|
418 |
+
k,
|
419 |
+
v,
|
420 |
+
do,
|
421 |
+
dz,
|
422 |
+
dq,
|
423 |
+
dk,
|
424 |
+
dv,
|
425 |
+
scale,
|
426 |
+
T=T,
|
427 |
+
B=B,
|
428 |
+
H=H,
|
429 |
+
K=K,
|
430 |
+
V=V,
|
431 |
+
BTL=BTL,
|
432 |
+
BTS=BTS,
|
433 |
+
BK=BK,
|
434 |
+
BV=BV,
|
435 |
+
num_warps=num_warps,
|
436 |
+
num_stages=num_stages
|
437 |
+
)
|
438 |
+
|
439 |
+
return dq.sum(0).to(q.dtype), dk.sum(0).to(k.dtype), dv.sum(0).to(v.dtype), None
|
440 |
+
|
441 |
+
|
442 |
+
def parallel_rebased(
|
443 |
+
q: torch.Tensor,
|
444 |
+
k: torch.Tensor,
|
445 |
+
v: torch.Tensor,
|
446 |
+
eps: float = 1e-5,
|
447 |
+
use_scale: bool = True,
|
448 |
+
use_normalize: bool = True,
|
449 |
+
return_both: bool = False,
|
450 |
+
head_first: bool = True
|
451 |
+
):
|
452 |
+
assert q.shape[-1] <= 128, "only support feature dim up to 128"
|
453 |
+
if use_scale:
|
454 |
+
scale = q.shape[-1] ** -0.5
|
455 |
+
else:
|
456 |
+
scale = 1
|
457 |
+
if not head_first:
|
458 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
459 |
+
o, z = ParallelBasedFunction.apply(q, k, v, scale)
|
460 |
+
if return_both:
|
461 |
+
return o, z
|
462 |
+
if use_normalize:
|
463 |
+
o = o / (z[..., None] + eps)
|
464 |
+
if not head_first:
|
465 |
+
o = o.transpose(1, 2)
|
466 |
+
return o.to(q.dtype)
|
fla/ops/retention/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_retention
|
4 |
+
from .fused_chunk import fused_chunk_retention
|
5 |
+
from .fused_recurrent import fused_recurrent_retention
|
6 |
+
from .parallel import parallel_retention
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'chunk_retention',
|
10 |
+
'fused_chunk_retention',
|
11 |
+
'parallel_retention',
|
12 |
+
'fused_recurrent_retention'
|
13 |
+
]
|
fla/ops/retention/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (3.7 kB). View file
|
|
fla/ops/retention/__pycache__/parallel.cpython-311.pyc
ADDED
Binary file (3.25 kB). View file
|
|
fla/ops/retention/chunk.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from fla.ops.simple_gla.chunk import chunk_simple_gla
|
9 |
+
|
10 |
+
|
11 |
+
@torch.compiler.disable
|
12 |
+
def chunk_retention(
|
13 |
+
q: torch.Tensor,
|
14 |
+
k: torch.Tensor,
|
15 |
+
v: torch.Tensor,
|
16 |
+
scale: Optional[float] = None,
|
17 |
+
initial_state: Optional[torch.Tensor] = None,
|
18 |
+
output_final_state: bool = False,
|
19 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
20 |
+
head_first: bool = True
|
21 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
22 |
+
r"""
|
23 |
+
Args:
|
24 |
+
q (torch.Tensor):
|
25 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
26 |
+
k (torch.Tensor):
|
27 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
28 |
+
v (torch.Tensor):
|
29 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
30 |
+
scale (Optional[int]):
|
31 |
+
Scale factor for the attention scores.
|
32 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
33 |
+
initial_state (Optional[torch.Tensor]):
|
34 |
+
Initial state of shape `[N, H, K, V]` for `N` input sequences.
|
35 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
36 |
+
Default: `None`.
|
37 |
+
output_final_state (Optional[bool]):
|
38 |
+
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
|
39 |
+
cu_seqlens (torch.LongTensor):
|
40 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
41 |
+
consistent with the FlashAttention API.
|
42 |
+
head_first (Optional[bool]):
|
43 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
44 |
+
Default: `True`.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
o (torch.Tensor):
|
48 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
49 |
+
final_state (torch.Tensor):
|
50 |
+
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
|
51 |
+
|
52 |
+
"""
|
53 |
+
if head_first:
|
54 |
+
n_heads = q.shape[1]
|
55 |
+
else:
|
56 |
+
n_heads = q.shape[2]
|
57 |
+
s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log()
|
58 |
+
if head_first:
|
59 |
+
g = s[None, :, None].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
60 |
+
else:
|
61 |
+
g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
62 |
+
return chunk_simple_gla(
|
63 |
+
q=q,
|
64 |
+
k=k,
|
65 |
+
v=v,
|
66 |
+
scale=scale,
|
67 |
+
g=g,
|
68 |
+
initial_state=initial_state,
|
69 |
+
output_final_state=output_final_state,
|
70 |
+
head_first=head_first,
|
71 |
+
cu_seqlens=cu_seqlens
|
72 |
+
)
|
fla/ops/retention/fused_recurrent.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from fla.ops.simple_gla.fused_recurrent import fused_recurrent_simple_gla
|
9 |
+
|
10 |
+
|
11 |
+
def fused_recurrent_retention(
|
12 |
+
q: torch.Tensor,
|
13 |
+
k: torch.Tensor,
|
14 |
+
v: torch.Tensor,
|
15 |
+
scale: Optional[float] = None,
|
16 |
+
initial_state: Optional[torch.Tensor] = None,
|
17 |
+
output_final_state: bool = False,
|
18 |
+
reverse: bool = False,
|
19 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
20 |
+
head_first: bool = True
|
21 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
22 |
+
if head_first:
|
23 |
+
n_heads = q.shape[1]
|
24 |
+
else:
|
25 |
+
n_heads = q.shape[2]
|
26 |
+
s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log()
|
27 |
+
if head_first:
|
28 |
+
g = s[None, :, None].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
29 |
+
else:
|
30 |
+
g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous()
|
31 |
+
return fused_recurrent_simple_gla(
|
32 |
+
q=q,
|
33 |
+
k=k,
|
34 |
+
v=v,
|
35 |
+
g=g,
|
36 |
+
scale=scale,
|
37 |
+
initial_state=initial_state,
|
38 |
+
output_final_state=output_final_state,
|
39 |
+
reverse=reverse,
|
40 |
+
cu_seqlens=cu_seqlens,
|
41 |
+
head_first=head_first
|
42 |
+
)
|
fla/ops/retention/naive.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def naive_retention(q, k, v):
|
7 |
+
orig_type = q.dtype
|
8 |
+
q, k, v = q.float(), k.float(), v.float()
|
9 |
+
_, n_heads, seq_len, d_head = q.shape
|
10 |
+
s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log2()
|
11 |
+
n = q.new_tensor(range(seq_len), dtype=torch.float)
|
12 |
+
n = torch.exp2((n.unsqueeze(-1) - n) * s.view(-1, 1, 1)) * n.unsqueeze(-1).ge(n)
|
13 |
+
s = torch.einsum('bhqd,bhkd,hqk->bhqk', q * d_head ** -0.5, k, n.to(q.dtype))
|
14 |
+
o = torch.einsum('bhqk,bhkd->bhqd', s, v)
|
15 |
+
return o.to(orig_type)
|
fla/ops/rwkv4/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .fused_recurrent import fused_recurrent_rwkv4
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'fused_recurrent_rwkv4'
|
7 |
+
]
|
fla/ops/rwkv4/fused_recurrent.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Any, cast
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.autograd.function import Function, FunctionCtx, once_differentiable
|
11 |
+
|
12 |
+
from fla.ops.utils.op import exp
|
13 |
+
|
14 |
+
|
15 |
+
def get_block_size_c(chans: int) -> int:
|
16 |
+
if chans < 32:
|
17 |
+
return 32
|
18 |
+
if chans < 64:
|
19 |
+
return 64
|
20 |
+
return 128
|
21 |
+
|
22 |
+
|
23 |
+
@triton.jit
|
24 |
+
def fused_recurrent_rwkv4_forward_kernel(
|
25 |
+
# W
|
26 |
+
w_ptr,
|
27 |
+
w_s_c,
|
28 |
+
# U
|
29 |
+
u_ptr,
|
30 |
+
u_s_c,
|
31 |
+
# K
|
32 |
+
k_ptr,
|
33 |
+
k_s_b,
|
34 |
+
k_s_t,
|
35 |
+
k_s_c,
|
36 |
+
# V
|
37 |
+
v_ptr,
|
38 |
+
v_s_b,
|
39 |
+
v_s_t,
|
40 |
+
v_s_c,
|
41 |
+
# State
|
42 |
+
state_ptr,
|
43 |
+
state_s_b,
|
44 |
+
state_s_abe,
|
45 |
+
state_s_c,
|
46 |
+
# WKV
|
47 |
+
wkv_ptr,
|
48 |
+
wkv_s_b,
|
49 |
+
wkv_s_t,
|
50 |
+
wkv_s_c,
|
51 |
+
# Output state
|
52 |
+
state_out_ptr,
|
53 |
+
state_out_s_b,
|
54 |
+
state_out_s_abe,
|
55 |
+
state_out_s_t,
|
56 |
+
state_out_s_c,
|
57 |
+
# Params
|
58 |
+
chans,
|
59 |
+
tsz,
|
60 |
+
BLOCK_SIZE_C: tl.constexpr,
|
61 |
+
):
|
62 |
+
# Parallelize over the batch dimension.
|
63 |
+
b_idx = tl.program_id(0)
|
64 |
+
c_idx = tl.program_id(1)
|
65 |
+
|
66 |
+
cs = (c_idx * BLOCK_SIZE_C) + tl.arange(0, BLOCK_SIZE_C)
|
67 |
+
cmask = cs < chans
|
68 |
+
|
69 |
+
# Pointers to the batch (and possibly channel) for the input tensors.
|
70 |
+
k_ptr = k_ptr + b_idx * k_s_b
|
71 |
+
v_ptr = v_ptr + b_idx * v_s_b
|
72 |
+
alpha_ptr = state_ptr + b_idx * state_s_b
|
73 |
+
beta_ptr = state_ptr + b_idx * state_s_b + state_s_abe
|
74 |
+
eps_ptr = state_ptr + b_idx * state_s_b + 2 * state_s_abe
|
75 |
+
|
76 |
+
# Pointers to the batch (and possibly channel) for the output tensors.
|
77 |
+
wkv_ptr = wkv_ptr + b_idx * wkv_s_b
|
78 |
+
alpha_out_ptr = state_out_ptr + b_idx * state_out_s_b
|
79 |
+
beta_out_ptr = state_out_ptr + b_idx * state_out_s_b + state_out_s_abe
|
80 |
+
eps_out_ptr = state_out_ptr + b_idx * state_out_s_b + 2 * state_out_s_abe
|
81 |
+
|
82 |
+
# Loads parameters.
|
83 |
+
alpha = tl.load(alpha_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
84 |
+
beta = tl.load(beta_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
85 |
+
eps = tl.load(eps_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
86 |
+
w = tl.load(w_ptr + cs * w_s_c, mask=cmask).to(tl.float32)
|
87 |
+
u = tl.load(u_ptr + cs * u_s_c, mask=cmask).to(tl.float32)
|
88 |
+
|
89 |
+
for t in range(tsz):
|
90 |
+
kt = tl.load(k_ptr + t * k_s_t + cs * k_s_c, mask=cmask).to(tl.float32)
|
91 |
+
vt = tl.load(v_ptr + t * v_s_t + cs * v_s_c, mask=cmask).to(tl.float32)
|
92 |
+
|
93 |
+
ukt = u + kt
|
94 |
+
tau = tl.maximum(ukt, eps)
|
95 |
+
e1a = exp(eps - tau)
|
96 |
+
e2a = exp(ukt - tau)
|
97 |
+
wkv = (e1a * alpha + e2a * vt) / (e1a * beta + e2a)
|
98 |
+
tl.store(wkv_ptr + t * wkv_s_t + cs * wkv_s_c, wkv, mask=cmask)
|
99 |
+
|
100 |
+
w_eps = w + eps
|
101 |
+
eps = tl.maximum(w_eps, kt)
|
102 |
+
e1b = exp(w_eps - eps)
|
103 |
+
e2b = exp(kt - eps)
|
104 |
+
alpha = e1b * alpha + e2b * vt
|
105 |
+
beta = e1b * beta + e2b
|
106 |
+
tl.store(alpha_out_ptr + t * state_out_s_t + cs * state_out_s_c, alpha, mask=cmask)
|
107 |
+
tl.store(beta_out_ptr + t * state_out_s_t + cs * state_out_s_c, beta, mask=cmask)
|
108 |
+
tl.store(eps_out_ptr + t * state_out_s_t + cs * state_out_s_c, eps, mask=cmask)
|
109 |
+
|
110 |
+
|
111 |
+
def fused_recurrent_rwkv4_forward(
|
112 |
+
w: Tensor,
|
113 |
+
u: Tensor,
|
114 |
+
k: Tensor,
|
115 |
+
v: Tensor,
|
116 |
+
state: Tensor,
|
117 |
+
) -> tuple[Tensor, Tensor]:
|
118 |
+
(bsz, tsz, chans) = k.shape
|
119 |
+
|
120 |
+
# New tensors to output.
|
121 |
+
wkvs = k.new_empty(bsz, tsz, chans)
|
122 |
+
state_out = k.new_empty(bsz, 3, tsz, chans)
|
123 |
+
|
124 |
+
# Constants.
|
125 |
+
block_size_c = get_block_size_c(chans)
|
126 |
+
|
127 |
+
def grid(meta: dict[str, Any]) -> tuple[int, ...]:
|
128 |
+
return (bsz, triton.cdiv(chans, meta["BLOCK_SIZE_C"]))
|
129 |
+
|
130 |
+
fused_recurrent_rwkv4_forward_kernel[grid](
|
131 |
+
# W
|
132 |
+
w,
|
133 |
+
w.stride(0),
|
134 |
+
# U
|
135 |
+
u,
|
136 |
+
u.stride(0),
|
137 |
+
# K
|
138 |
+
k,
|
139 |
+
k.stride(0),
|
140 |
+
k.stride(1),
|
141 |
+
k.stride(2),
|
142 |
+
# V
|
143 |
+
v,
|
144 |
+
v.stride(0),
|
145 |
+
v.stride(1),
|
146 |
+
v.stride(2),
|
147 |
+
# State
|
148 |
+
state,
|
149 |
+
state.stride(0),
|
150 |
+
state.stride(1),
|
151 |
+
state.stride(3),
|
152 |
+
# WKV
|
153 |
+
wkvs,
|
154 |
+
wkvs.stride(0),
|
155 |
+
wkvs.stride(1),
|
156 |
+
wkvs.stride(2),
|
157 |
+
# Output state
|
158 |
+
state_out,
|
159 |
+
state_out.stride(0),
|
160 |
+
state_out.stride(1),
|
161 |
+
state_out.stride(2),
|
162 |
+
state_out.stride(3),
|
163 |
+
# Params
|
164 |
+
chans,
|
165 |
+
tsz,
|
166 |
+
BLOCK_SIZE_C=block_size_c,
|
167 |
+
)
|
168 |
+
|
169 |
+
state_out = torch.cat((state, state_out), dim=2)
|
170 |
+
|
171 |
+
return wkvs, state_out
|
172 |
+
|
173 |
+
|
174 |
+
@triton.jit
|
175 |
+
def fused_recurrent_rwkv4_backward_kernel(
|
176 |
+
# W
|
177 |
+
w_ptr,
|
178 |
+
w_s_c,
|
179 |
+
# U
|
180 |
+
u_ptr,
|
181 |
+
u_s_c,
|
182 |
+
# K
|
183 |
+
k_ptr,
|
184 |
+
k_s_b,
|
185 |
+
k_s_t,
|
186 |
+
k_s_c,
|
187 |
+
# V
|
188 |
+
v_ptr,
|
189 |
+
v_s_b,
|
190 |
+
v_s_t,
|
191 |
+
v_s_c,
|
192 |
+
# State
|
193 |
+
state_ptr,
|
194 |
+
state_s_b,
|
195 |
+
state_s_abe,
|
196 |
+
state_s_t,
|
197 |
+
state_s_c,
|
198 |
+
# WKV grad
|
199 |
+
gwkv_ptr,
|
200 |
+
gwkv_s_b,
|
201 |
+
gwkv_s_t,
|
202 |
+
gwkv_s_c,
|
203 |
+
# Output state grad
|
204 |
+
gstate_out_ptr,
|
205 |
+
gstate_out_s_b,
|
206 |
+
gstate_out_s_abe,
|
207 |
+
gstate_out_s_c,
|
208 |
+
# W grad
|
209 |
+
gw_ptr,
|
210 |
+
gw_s_c,
|
211 |
+
# U grad
|
212 |
+
gu_ptr,
|
213 |
+
gu_s_c,
|
214 |
+
# K grad
|
215 |
+
gk_ptr,
|
216 |
+
gk_s_b,
|
217 |
+
gk_s_t,
|
218 |
+
gk_s_c,
|
219 |
+
# V grad
|
220 |
+
gv_ptr,
|
221 |
+
gv_s_b,
|
222 |
+
gv_s_t,
|
223 |
+
gv_s_c,
|
224 |
+
# State grad
|
225 |
+
gstate_ptr,
|
226 |
+
gstate_s_b,
|
227 |
+
gstate_s_abe,
|
228 |
+
gstate_s_c,
|
229 |
+
# Params
|
230 |
+
tsz,
|
231 |
+
chans,
|
232 |
+
BLOCK_SIZE_C: tl.constexpr,
|
233 |
+
):
|
234 |
+
# Parallelize over the batch dimension.
|
235 |
+
b_idx = tl.program_id(0)
|
236 |
+
c_idx = tl.program_id(1)
|
237 |
+
|
238 |
+
cs = (c_idx * BLOCK_SIZE_C) + tl.arange(0, BLOCK_SIZE_C)
|
239 |
+
cmask = cs < chans
|
240 |
+
|
241 |
+
# Pointers to the batch (and possibly channel) for the input tensors.
|
242 |
+
k_ptr = k_ptr + b_idx * k_s_b
|
243 |
+
v_ptr = v_ptr + b_idx * v_s_b
|
244 |
+
alpha_ptr = state_ptr + b_idx * state_s_b
|
245 |
+
beta_ptr = state_ptr + b_idx * state_s_b + state_s_abe
|
246 |
+
eps_ptr = state_ptr + b_idx * state_s_b + 2 * state_s_abe
|
247 |
+
|
248 |
+
# Pointers to the batch (and possibly channel) for the output tensors.
|
249 |
+
gk_ptr = gk_ptr + b_idx * gk_s_b
|
250 |
+
gv_ptr = gv_ptr + b_idx * gv_s_b
|
251 |
+
|
252 |
+
# Pointers to gradients which were recieved by the function.
|
253 |
+
gwkv_ptr = gwkv_ptr + b_idx * gwkv_s_b
|
254 |
+
galpha_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b
|
255 |
+
gbeta_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + gstate_out_s_abe
|
256 |
+
geps_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + 2 * gstate_out_s_abe
|
257 |
+
|
258 |
+
# Loads parameters.
|
259 |
+
galpha = tl.load(galpha_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
260 |
+
gbeta = tl.load(gbeta_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
261 |
+
geps = tl.load(geps_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
262 |
+
w = tl.load(w_ptr + w_s_c * cs, mask=cmask).to(tl.float32)
|
263 |
+
u = tl.load(u_ptr + u_s_c * cs, mask=cmask).to(tl.float32)
|
264 |
+
|
265 |
+
# Gradient accumulators.
|
266 |
+
gw = tl.zeros_like(w)
|
267 |
+
gu = tl.zeros_like(u)
|
268 |
+
|
269 |
+
alpha_prev = tl.load(alpha_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
270 |
+
beta_prev = tl.load(beta_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
271 |
+
eps_prev = tl.load(eps_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
272 |
+
|
273 |
+
for t in range(tsz):
|
274 |
+
tc = tsz - t - 1
|
275 |
+
|
276 |
+
kt = tl.load(k_ptr + tc * k_s_t + k_s_c * cs, mask=cmask).to(tl.float32)
|
277 |
+
vt = tl.load(v_ptr + tc * v_s_t + v_s_c * cs, mask=cmask).to(tl.float32)
|
278 |
+
|
279 |
+
alpha_curr = alpha_prev
|
280 |
+
beta_curr = beta_prev
|
281 |
+
eps_curr = eps_prev
|
282 |
+
|
283 |
+
alpha_prev = tl.load(alpha_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
284 |
+
beta_prev = tl.load(beta_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
285 |
+
eps_prev = tl.load(eps_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
286 |
+
|
287 |
+
ukt = u + kt
|
288 |
+
tau = tl.maximum(ukt, eps_prev)
|
289 |
+
e1 = exp(eps_prev - tau)
|
290 |
+
e2 = exp(ukt - tau)
|
291 |
+
|
292 |
+
euke = exp(ukt + eps_prev - 2 * tau)
|
293 |
+
|
294 |
+
denom = e1 * beta_prev + e2
|
295 |
+
denom_sq = denom * denom
|
296 |
+
|
297 |
+
gwkvt = tl.load(gwkv_ptr + tc * gwkv_s_t + gwkv_s_c * cs, mask=cmask).to(tl.float32)
|
298 |
+
|
299 |
+
# Backpropagates wkv gradients.
|
300 |
+
guk = gwkvt * e2 * (e1 * beta_prev * vt - e1 * alpha_prev) / denom_sq
|
301 |
+
gu += guk
|
302 |
+
gk = guk
|
303 |
+
gv = gwkvt * e2 / denom
|
304 |
+
|
305 |
+
galpha_wkv = gwkvt * e1 / denom
|
306 |
+
gbeta_wkv = -gwkvt * e1 * (e2 * vt + e1 * alpha_prev) / denom_sq
|
307 |
+
geps_wkv_denom = e1 * beta_prev + e2
|
308 |
+
geps_wkv = gwkvt * euke * (alpha_prev - vt * beta_prev) / (geps_wkv_denom * geps_wkv_denom)
|
309 |
+
|
310 |
+
e1 = exp(w + eps_prev - eps_curr)
|
311 |
+
e2 = exp(kt - eps_curr)
|
312 |
+
|
313 |
+
# Backpropagates alpha gradients.
|
314 |
+
galpha_we = galpha * e1 * alpha_prev
|
315 |
+
gw += galpha_we
|
316 |
+
gk += galpha * e2 * vt
|
317 |
+
gv += galpha * e2
|
318 |
+
geps += galpha * -alpha_curr
|
319 |
+
|
320 |
+
# Backpropagates beta gradients.
|
321 |
+
gbeta_we = gbeta * e1 * beta_prev
|
322 |
+
gw += gbeta_we
|
323 |
+
gk += gbeta * e2
|
324 |
+
geps += gbeta * -beta_curr
|
325 |
+
|
326 |
+
# Backpropagates epsilon gradients.
|
327 |
+
geps_mask = w + eps_prev > kt
|
328 |
+
geps_we = tl.where(geps_mask, geps, tl.zeros_like(geps))
|
329 |
+
gw += geps_we
|
330 |
+
gk += tl.where(geps_mask, tl.zeros_like(geps), geps)
|
331 |
+
|
332 |
+
# Stores the gradients for k and v.
|
333 |
+
tl.store(gk_ptr + tc * gk_s_t + gk_s_c * cs, gk, mask=cmask)
|
334 |
+
tl.store(gv_ptr + tc * gv_s_t + gv_s_c * cs, gv, mask=cmask)
|
335 |
+
|
336 |
+
# Computes new gradients for alpha and beta.
|
337 |
+
galpha = galpha * e1 + galpha_wkv
|
338 |
+
gbeta = gbeta * e1 + gbeta_wkv
|
339 |
+
geps = galpha_we + gbeta_we + geps_we + geps_wkv
|
340 |
+
|
341 |
+
# Stores final gradients for alpha and beta.
|
342 |
+
galpha_ptr = gstate_ptr + b_idx * gstate_s_b
|
343 |
+
gbeta_ptr = gstate_ptr + b_idx * gstate_s_b + gstate_s_abe
|
344 |
+
geps_ptr = gstate_ptr + b_idx * gstate_s_b + 2 * gstate_s_abe
|
345 |
+
tl.store(galpha_ptr + gstate_s_c * cs, galpha, mask=cmask)
|
346 |
+
tl.store(gbeta_ptr + gstate_s_c * cs, gbeta, mask=cmask)
|
347 |
+
tl.store(geps_ptr + gstate_s_c * cs, geps, mask=cmask)
|
348 |
+
|
349 |
+
# Stores final gradients for w and u.
|
350 |
+
gw_temp = tl.load(gw_ptr + gw_s_c * cs, mask=cmask).to(tl.float32)
|
351 |
+
gw_temp += gw
|
352 |
+
tl.store(gw_ptr + gw_s_c * cs, gw_temp, mask=cmask)
|
353 |
+
gu_temp = tl.load(gu_ptr + gu_s_c * cs, mask=cmask).to(tl.float32)
|
354 |
+
gu_temp += gu
|
355 |
+
tl.store(gu_ptr + gu_s_c * cs, gu_temp, mask=cmask)
|
356 |
+
|
357 |
+
|
358 |
+
def fused_recurrent_rwkv4_backward(
|
359 |
+
w: Tensor,
|
360 |
+
u: Tensor,
|
361 |
+
k: Tensor,
|
362 |
+
v: Tensor,
|
363 |
+
state: Tensor,
|
364 |
+
grad_wkv: Tensor,
|
365 |
+
grad_state: Tensor,
|
366 |
+
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
|
367 |
+
bsz, tsz, chans = k.shape
|
368 |
+
|
369 |
+
gw = torch.zeros_like(w) # New tensors to output.
|
370 |
+
gu = torch.zeros_like(u)
|
371 |
+
gk = torch.empty_like(k)
|
372 |
+
gv = torch.empty_like(v)
|
373 |
+
gstate = k.new_empty(bsz, 3, 1, chans)
|
374 |
+
|
375 |
+
block_size_c = get_block_size_c(chans) # Constants.
|
376 |
+
|
377 |
+
def grid(meta: dict[str, Any]) -> tuple[int, ...]:
|
378 |
+
return (bsz, triton.cdiv(chans, meta["BLOCK_SIZE_C"]))
|
379 |
+
|
380 |
+
fused_recurrent_rwkv4_backward_kernel[grid](
|
381 |
+
# W
|
382 |
+
w,
|
383 |
+
w.stride(0),
|
384 |
+
# U
|
385 |
+
u,
|
386 |
+
u.stride(0),
|
387 |
+
# K
|
388 |
+
k,
|
389 |
+
k.stride(0),
|
390 |
+
k.stride(1),
|
391 |
+
k.stride(2),
|
392 |
+
# V
|
393 |
+
v,
|
394 |
+
v.stride(0),
|
395 |
+
v.stride(1),
|
396 |
+
v.stride(2),
|
397 |
+
# State
|
398 |
+
state,
|
399 |
+
state.stride(0),
|
400 |
+
state.stride(1),
|
401 |
+
state.stride(2),
|
402 |
+
state.stride(3),
|
403 |
+
# WKV grad
|
404 |
+
grad_wkv,
|
405 |
+
grad_wkv.stride(0),
|
406 |
+
grad_wkv.stride(1),
|
407 |
+
grad_wkv.stride(2),
|
408 |
+
# Output state grad
|
409 |
+
grad_state,
|
410 |
+
grad_state.stride(0),
|
411 |
+
grad_state.stride(1),
|
412 |
+
grad_state.stride(3),
|
413 |
+
# W grad
|
414 |
+
gw,
|
415 |
+
gw.stride(0),
|
416 |
+
# U grad
|
417 |
+
gu,
|
418 |
+
gu.stride(0),
|
419 |
+
# K grad
|
420 |
+
gk,
|
421 |
+
gk.stride(0),
|
422 |
+
gk.stride(1),
|
423 |
+
gk.stride(2),
|
424 |
+
# V grad
|
425 |
+
gv,
|
426 |
+
gv.stride(0),
|
427 |
+
gv.stride(1),
|
428 |
+
gv.stride(2),
|
429 |
+
# State grad
|
430 |
+
gstate,
|
431 |
+
gstate.stride(0),
|
432 |
+
gstate.stride(1),
|
433 |
+
gstate.stride(3),
|
434 |
+
# Params
|
435 |
+
tsz,
|
436 |
+
chans,
|
437 |
+
BLOCK_SIZE_C=block_size_c,
|
438 |
+
)
|
439 |
+
|
440 |
+
return gw, gu, gk, gv, gstate
|
441 |
+
|
442 |
+
|
443 |
+
class FusedRecurrentRWKV4Function(Function):
|
444 |
+
@staticmethod
|
445 |
+
def forward(
|
446 |
+
ctx: FunctionCtx,
|
447 |
+
w: Tensor,
|
448 |
+
u: Tensor,
|
449 |
+
k: Tensor,
|
450 |
+
v: Tensor,
|
451 |
+
state: Tensor,
|
452 |
+
) -> tuple[Tensor, Tensor]:
|
453 |
+
ctx.input_dtype = k.dtype
|
454 |
+
|
455 |
+
w = -torch.exp(w.float().contiguous())
|
456 |
+
if k.dtype == torch.float16:
|
457 |
+
u = u.float()
|
458 |
+
k = k.float()
|
459 |
+
v = v.float()
|
460 |
+
u = u.contiguous()
|
461 |
+
k = k.contiguous()
|
462 |
+
v = v.contiguous()
|
463 |
+
wkv, state_out = fused_recurrent_rwkv4_forward(w, u, k, v, state)
|
464 |
+
ctx.save_for_backward(w, u, k, v, state_out[:, :, :-1])
|
465 |
+
return wkv, state_out[:, :, -1:]
|
466 |
+
|
467 |
+
@staticmethod
|
468 |
+
@once_differentiable
|
469 |
+
def backward(ctx: FunctionCtx, gwkv: Tensor, gstate: Tensor) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
|
470 |
+
w, u, k, v, state = cast(tuple[Tensor, ...], ctx.saved_tensors)
|
471 |
+
gw, gu, gk, gv, gstate = fused_recurrent_rwkv4_backward(w, u, k, v, state, gwkv, gstate)
|
472 |
+
return gw, gu, gk, gv, gstate
|
473 |
+
|
474 |
+
|
475 |
+
def fused_recurrent_rwkv4(w: Tensor, u: Tensor, k: Tensor, v: Tensor, state: Tensor) -> tuple[Tensor, Tensor]:
|
476 |
+
return FusedRecurrentRWKV4Function.apply(w, u, k, v, state)
|
fla/ops/rwkv6/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_rwkv6
|
4 |
+
from .fused_recurrent import fused_recurrent_rwkv6
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'chunk_rwkv6',
|
8 |
+
'fused_recurrent_rwkv6'
|
9 |
+
]
|
fla/ops/rwkv6/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (325 Bytes). View file
|
|
fla/ops/rwkv6/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (83 kB). View file
|
|
fla/ops/rwkv6/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (40.3 kB). View file
|
|