MTP-120M / fla /modules /rotary.py
Erland's picture
Add files using upload-large-folder tool
2cb275d verified
# -*- coding: utf-8 -*-
# Copyright (c) 2023, Tri Dao.
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import triton
import triton.language as tl
from einops import rearrange, repeat
from fla.utils import get_multiprocessor_count, input_guard
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(torch.stack((-x2, x1), dim=-1), '... d two -> ... (d two)', two=2)
def rotary_embedding_ref(x, cos, sin, interleaved=False):
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos = repeat(cos, '... d -> ... 1 (2 d)' if not interleaved else '... d -> ... 1 (d 2)')
sin = repeat(sin, '... d -> ... 1 (2 d)' if not interleaved else '... d -> ... 1 (d 2)')
return torch.cat([x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], -1)
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['B', 'H', 'D', 'INTERLEAVED'],
)
@triton.jit
def rotary_embedding_kernel(
x,
cos,
sin,
y,
cu_seqlens,
seq_offsets, # this could be int or a pointer
# Matrix dimensions
B: tl.constexpr,
T: tl.constexpr,
H: tl.constexpr,
D: tl.constexpr,
R: tl.constexpr,
TR: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
IS_VARLEN: tl.constexpr,
INTERLEAVED: tl.constexpr,
CONJUGATE: tl.constexpr
):
i_t, i_b, i_h = tl.program_id(0), tl.program_id(1), tl.program_id(2)
if not IS_VARLEN:
x = x + i_b * T*H*D + i_h * D
y = y + i_b * T*H*D + i_h * D
else:
bos, eos = tl.load(cu_seqlens + i_b), tl.load(cu_seqlens + i_b + 1)
T = eos - bos
x = x + bos * H*D + i_h * D
y = y + bos * H*D + i_h * D
if i_t * BT >= T:
return
o_t = i_t * BT + tl.arange(0, BT)
if not IS_SEQLEN_OFFSETS_TENSOR:
o_cs = o_t + seq_offsets
else:
o_cs = o_t + tl.load(seq_offsets + i_b)
if not INTERLEAVED:
# Load the 1st and 2nd halves of x, do calculation, then store to 1st and 2nd halves of out
o_r = tl.arange(0, BD // 2)
p_x = x + o_t[:, None] * H*D + o_r[None, :]
p_cos = cos + (o_cs[:, None] * R + o_r[None, :])
p_sin = sin + (o_cs[:, None] * R + o_r[None, :])
mask = (o_t[:, None] >= 0) & (o_t[:, None] < T) & (o_r[None, :] < R)
b_cos = tl.load(p_cos, mask=mask, other=1.0).to(tl.float32)
b_sin = tl.load(p_sin, mask=mask, other=0.0).to(tl.float32)
b_x0 = tl.load(p_x, mask=mask, other=0.0).to(tl.float32)
b_x1 = tl.load(p_x + R, mask=mask, other=0.0).to(tl.float32)
if CONJUGATE:
b_sin = -b_sin
b_o0 = b_x0 * b_cos - b_x1 * b_sin
b_o1 = b_x0 * b_sin + b_x1 * b_cos
# write back result
p_y = y + (o_t[:, None] * H*D + o_r[None, :])
tl.store(p_y, b_o0, mask=mask)
tl.store(p_y + R, b_o1, mask=mask)
else:
# We don't want to load x[0, 2, 4, ...] and x[1, 3, 5, ...] separately since both are slow.
# Instead, we load x0 = x[0, 1, 2, 3, ...] and x1 = x[1, 0, 3, 2, ...].
# Loading x0 will be fast but x1 will be slow.
# Then we load cos = cos[0, 0, 1, 1, ...] and sin = sin[0, 0, 1, 1, ...].
# Then we do the calculation and use tl.where to pick put the right outputs for the even
# and for the odd indices.
o_d = tl.arange(0, BD)
o_d_swap = o_d + ((o_d + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
o_d_repeat = tl.arange(0, BD) // 2
p_x0 = x + o_t[:, None] * H*D + o_d[None, :]
p_x1 = x + o_t[:, None] * H*D + o_d_swap[None, :]
p_cos = cos + (o_cs[:, None] * R + o_d_repeat[None, :])
p_sin = sin + (o_cs[:, None] * R + o_d_repeat[None, :])
mask = (o_cs[:, None] >= 0) & (o_cs[:, None] < TR) & (o_d_repeat[None, :] < R)
b_cos = tl.load(p_cos, mask=mask, other=1.0).to(tl.float32)
b_sin = tl.load(p_sin, mask=mask, other=0.0).to(tl.float32)
b_x0 = tl.load(p_x0, mask=mask, other=0.0).to(tl.float32)
b_x1 = tl.load(p_x1, mask=mask, other=0.0).to(tl.float32)
if CONJUGATE:
b_sin = -b_sin
b_o0 = b_x0 * b_cos
b_o1 = b_x1 * b_sin
b_y = tl.where(o_d[None, :] % 2 == 0, b_o0 - b_o1, b_o0 + b_o1)
p_y = y + (o_t[:, None] * H*D + o_d[None, :])
tl.store(p_y, b_y, mask=mask)
def rotary_embedding_fwdbwd(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
interleaved: bool = False,
inplace: bool = False,
conjugate: bool = False
) -> torch.Tensor:
"""
Args:
x: [B, T, H, D].
cos: [TR, R / 2]
sin: [TR, R / 2]
seqlen_offsets: integer or integer tensor of size (N,)
cu_seqlens: (N + 1,) or None
max_seqlen: int
Returns:
y: [B, T, H, D]
"""
is_varlen = cu_seqlens is not None
B, T, H, D = x.shape
if not is_varlen:
N = B
else:
assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
N, T = cu_seqlens.shape[0] - 1, max_seqlen
TR, R = cos.shape
assert sin.shape == cos.shape
R2 = R * 2
assert D <= 256, "Only support D <= 256"
assert TR >= T, "TR must be >= T"
assert cos.dtype == sin.dtype, f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
assert x.dtype == cos.dtype, f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
if isinstance(seqlen_offsets, torch.Tensor):
assert seqlen_offsets.shape == (N,)
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
else:
assert seqlen_offsets + T <= TR
y = torch.empty_like(x) if not inplace else x
if R2 < D and not inplace:
y[..., R2:].copy_(x[..., R2:])
BD = triton.next_power_of_2(R2)
BT = min(128, triton.next_power_of_2(triton.cdiv(T, get_multiprocessor_count(x.device.index))))
def grid(meta): return (triton.cdiv(T, meta['BT']), N, H) # noqa
rotary_embedding_kernel[grid](
x,
cos,
sin,
y,
cu_seqlens,
seqlen_offsets,
B=B,
T=T,
H=H,
D=D,
R=R,
TR=TR,
BT=BT,
BD=BD,
IS_SEQLEN_OFFSETS_TENSOR=isinstance(seqlen_offsets, torch.Tensor),
IS_VARLEN=is_varlen,
INTERLEAVED=interleaved,
CONJUGATE=conjugate
)
return y
class RotaryEmbeddingFunction(torch.autograd.Function):
@staticmethod
@input_guard
def forward(
ctx,
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
y = rotary_embedding_fwdbwd(
x,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=interleaved,
inplace=inplace,
)
if isinstance(seqlen_offsets, int):
# Can't save int with save_for_backward
ctx.save_for_backward(cos, sin, cu_seqlens)
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.interleaved = interleaved
ctx.inplace = inplace
ctx.max_seqlen = max_seqlen
return y if not inplace else x
@staticmethod
@input_guard
def backward(ctx, do):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
if not ctx.interleaved and not ctx.inplace:
do = do.clone()
dx = rotary_embedding_fwdbwd(
do,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=ctx.interleaved,
inplace=ctx.inplace,
conjugate=True,
)
return dx, None, None, None, None, None, None, None
def rotary_embedding(
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Args:
x: [B, T, H, D]
cos, sin: [TR, R//2]
interleaved:
If True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style).
inplace:
If True, apply rotary embedding in-place.
seqlen_offsets: [N,] or int.
Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: [N + 1,] or None
max_seqlen: int
Returns:
out: [B, T, H, D]
"""
return RotaryEmbeddingFunction.apply(
x,
cos,
sin,
interleaved,
inplace,
seqlen_offsets,
cu_seqlens,
max_seqlen
)
class RotaryEmbedding(nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
scale_base: Optional[float] = None,
interleaved: bool = False,
pos_idx_in_fp32: bool = True,
device: Optional[torch.device] = None,
):
"""
interleaved:
If True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32:
If True, the position indices [0.0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq.
In most cases this would be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16, we add this option.
"""
super().__init__()
self.dim = dim
self.base = float(base)
self.scale_base = scale_base
self.interleaved = interleaved
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.device = device
# Generate and save the inverse frequency buffer (non trainable)
self.register_buffer("inv_freq", torch.empty(-(dim // -2), dtype=torch.float32, device=device), persistent=False)
scale = None
if scale_base is not None:
scale = torch.empty(-(dim // -2), dtype=torch.float32, device=device)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.reset_parameters()
def reset_parameters(self):
with torch.no_grad():
self.inv_freq.copy_(self._compute_inv_freq(device=self.inv_freq.device))
if self.scale_base is not None:
self.scale.copy_(self._compute_scale(device=self.scale.device))
def __repr__(self):
s = f"{self.__class__.__name__}("
s += f"dim={self.dim}, "
s += f"base={self.base}, "
s += f"interleaved={self.interleaved}, "
if self.scale_base is not None:
s += f"scale_base={self.scale_base}, "
s += f"pos_idx_in_fp32={self.pos_idx_in_fp32})"
return s
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
)
def _compute_scale(self, device=None):
return (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) + 0.4 * self.dim) / (1.4 * self.dim)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
seqlen_offset: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
q: [B, T, H, D]
k: [B, T, H, D]
seqlen_offset:
(N,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
If it's a tensor of shape (N,), then to update the cos / sin cache, one
should pass in max_seqlen, which will update the cos / sin cache up to that length.
cu_seqlens: (N + 1,) or None
max_seqlen: int
"""
if max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=q.device, dtype=q.dtype)
elif isinstance(seqlen_offset, int):
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
if self.scale is None:
q = rotary_embedding(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
k = rotary_embedding(
k,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
else:
q = rotary_embedding(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
k = rotary_embedding(
k,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
return q, k