MTP-120M / fla /modules /fused_norm_gate.py
Erland's picture
Add files using upload-large-folder tool
7fdd671 verified
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from __future__ import annotations
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl
from fla.utils import get_multiprocessor_count, input_guard
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['N', 'HAS_RESIDUAL', 'STORE_RESIDUAL_OUT', 'IS_RMS_NORM', 'HAS_BIAS'],
)
@triton.jit
def layer_norm_gated_fwd_kernel(
X, # pointer to the input
G, # pointer to the gate
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
RESIDUAL, # pointer to the residual
RESIDUAL_OUT, # pointer to the residual
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
N, # number of columns in X
eps, # epsilon to avoid division by zero
ACTIVATION: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_RESIDUAL: tl.constexpr,
STORE_RESIDUAL_OUT: tl.constexpr,
HAS_WEIGHT: tl.constexpr,
HAS_BIAS: tl.constexpr
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
X += row * N
Y += row * N
G += row * N
if HAS_RESIDUAL:
RESIDUAL += row * N
if STORE_RESIDUAL_OUT:
RESIDUAL_OUT += row * N
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
if HAS_RESIDUAL:
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
x += residual
if STORE_RESIDUAL_OUT:
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
if HAS_WEIGHT:
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w if HAS_WEIGHT else x_hat
if HAS_BIAS:
y = y + b
# Swish output gate
g = tl.load(G + cols, mask=cols < N, other=0.0).to(tl.float32)
if ACTIVATION == 'swish':
y = y * g * tl.sigmoid(g)
elif ACTIVATION == 'silu':
y = y * g * tl.sigmoid(g)
elif ACTIVATION == 'sigmoid':
y = y * tl.sigmoid(g)
# Write output
tl.store(Y + cols, y, mask=mask)
def layer_norm_gated_fwd(
x: torch.Tensor,
g: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
activation: str = 'swish',
eps: float = 1e-5,
residual: torch.Tensor = None,
out_dtype: torch.dtype = None,
residual_dtype: torch.dtype = None,
is_rms_norm: bool = False
):
if residual is not None:
residual_dtype = residual.dtype
M, N = x.shape
if residual is not None:
assert residual.shape == (M, N)
if weight is not None:
assert weight.shape == (N,)
if bias is not None:
assert bias.shape == (N,)
# allocate output
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
else:
residual_out = None
mean = torch.empty((M,), dtype=torch.float, device=x.device) if not is_rms_norm else None
rstd = torch.empty((M,), dtype=torch.float, device=x.device)
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
layer_norm_gated_fwd_kernel[(M,)](
x,
g,
y,
weight,
bias,
residual,
residual_out,
mean,
rstd,
N,
eps,
ACTIVATION=activation,
IS_RMS_NORM=is_rms_norm,
BLOCK_N=BLOCK_N,
HAS_RESIDUAL=residual is not None,
STORE_RESIDUAL_OUT=residual_out is not None,
HAS_WEIGHT=weight is not None,
HAS_BIAS=bias is not None,
)
# residual_out is None if residual is None and residual_dtype == input_dtype
return y, mean, rstd, residual_out if residual_out is not None else x
@triton.heuristics({
'RECOMPUTE_OUTPUT': lambda args: args["Y"] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['N', 'HAS_DRESIDUAL', 'STORE_DRESIDUAL', 'IS_RMS_NORM', 'HAS_BIAS'],
)
@triton.jit
def layer_norm_gated_bwd_kernel(
X, # pointer to the input
G, # pointer to the gate
W, # pointer to the weights
B, # pointer to the biases
Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
DG, # pointer to the gate gradient
DW, # pointer to the partial sum of weights gradient
DB, # pointer to the partial sum of biases gradient
DRESIDUAL,
DRESIDUAL_IN,
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
rows_per_program,
ACTIVATION: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_DRESIDUAL: tl.constexpr,
STORE_DRESIDUAL: tl.constexpr,
HAS_WEIGHT: tl.constexpr,
HAS_BIAS: tl.constexpr,
RECOMPUTE_OUTPUT: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row_block_id = tl.program_id(0)
row_start = row_block_id * rows_per_program
cols = tl.arange(0, BLOCK_N)
mask = cols < N
X += row_start * N
G += row_start * N
if HAS_DRESIDUAL:
DRESIDUAL += row_start * N
if STORE_DRESIDUAL:
DRESIDUAL_IN += row_start * N
DY += row_start * N
DX += row_start * N
DG += row_start * N
if RECOMPUTE_OUTPUT:
Y += row_start * N
if HAS_WEIGHT:
w = tl.load(W + cols, mask=mask).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
row_end = min((row_block_id + 1) * rows_per_program, M)
for row in range(row_start, row_end):
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
g = tl.load(G + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
if not IS_RMS_NORM:
mean = tl.load(Mean + row)
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.0)
y = xhat * w if HAS_WEIGHT else xhat
if HAS_BIAS:
y = y + b
if RECOMPUTE_OUTPUT:
tl.store(Y + cols, y, mask=mask)
sigmoid_g = tl.sigmoid(g)
if ACTIVATION == 'swish':
dg = dy * y * (sigmoid_g + g * sigmoid_g * (1 - sigmoid_g))
dy = dy * g * sigmoid_g
elif ACTIVATION == 'silu':
dg = dy * y * (sigmoid_g + g * sigmoid_g * (1 - sigmoid_g))
dy = dy * g * sigmoid_g
elif ACTIVATION == 'sigmoid':
dg = dy * y * sigmoid_g * (1 - sigmoid_g)
dy = dy * sigmoid_g
wdy = dy
if HAS_WEIGHT:
wdy = dy * w
dw += dy * xhat
if HAS_BIAS:
db += dy
if not IS_RMS_NORM:
c1 = tl.sum(xhat * wdy, axis=0) / N
c2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * c1 + c2)) * rstd
else:
c1 = tl.sum(xhat * wdy, axis=0) / N
dx = (wdy - xhat * c1) * rstd
if HAS_DRESIDUAL:
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
dx += dres
# Write dx
if STORE_DRESIDUAL:
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
tl.store(DX + cols, dx, mask=mask)
tl.store(DG + cols, dg, mask=mask)
X += N
G += N
if HAS_DRESIDUAL:
DRESIDUAL += N
if STORE_DRESIDUAL:
DRESIDUAL_IN += N
if RECOMPUTE_OUTPUT:
Y += N
DY += N
DX += N
DG += N
if HAS_WEIGHT:
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
if HAS_BIAS:
tl.store(DB + row_block_id * N + cols, db, mask=mask)
def layer_norm_gated_bwd(
dy: torch.Tensor,
x: torch.Tensor,
g: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
activation: str = 'swish',
eps: float = 1e-5,
mean: torch.Tensor = None,
rstd: torch.Tensor = None,
dresidual: torch.Tensor = None,
has_residual: bool = False,
is_rms_norm: bool = False,
x_dtype: torch.dtype = None,
recompute_output: bool = False,
):
M, N = x.shape
assert dy.shape == (M, N)
if dresidual is not None:
assert dresidual.shape == (M, N)
if weight is not None:
assert weight.shape == (N,)
if bias is not None:
assert bias.shape == (N,)
# allocate output
dx = torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device)
dg = torch.empty_like(g) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device)
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
sm_count = get_multiprocessor_count(x.device.index)
dw = torch.empty((sm_count, N), dtype=torch.float, device=weight.device) if weight is not None else None
db = torch.empty((sm_count, N), dtype=torch.float, device=bias.device) if bias is not None else None
rows_per_program = math.ceil(M / sm_count)
grid = (sm_count,)
layer_norm_gated_bwd_kernel[grid](
x,
g,
weight,
bias,
y,
dy,
dx,
dg,
dw,
db,
dresidual,
dresidual_in,
mean,
rstd,
M,
N,
eps,
rows_per_program,
ACTIVATION=activation,
IS_RMS_NORM=is_rms_norm,
BLOCK_N=BLOCK_N,
HAS_DRESIDUAL=dresidual is not None,
STORE_DRESIDUAL=dresidual_in is not None,
HAS_WEIGHT=weight is not None,
HAS_BIAS=bias is not None,
)
dw = dw.sum(0).to(weight.dtype) if weight is not None else None
db = db.sum(0).to(bias.dtype) if bias is not None else None
# Don't need to compute dresidual_in separately in this case
if has_residual and dx.dtype == x.dtype:
dresidual_in = dx
return (dx, dg, dw, db, dresidual_in) if not recompute_output else (dx, dg, dw, db, dresidual_in, y)
class LayerNormGatedFunction(torch.autograd.Function):
@staticmethod
@input_guard
def forward(
ctx,
x: torch.Tensor,
g: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
activation: str,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
prenorm: bool = False,
residual_in_fp32: bool = False,
is_rms_norm: bool = False,
):
x_shape_og = x.shape
g_shape_og = g.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
g = g.reshape(-1, g.shape[-1])
if residual is not None:
assert residual.shape == x_shape_og
residual = residual.reshape(-1, residual.shape[-1])
residual_dtype = (
residual.dtype
if residual is not None
else (torch.float if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = layer_norm_gated_fwd(
x=x,
g=g,
weight=weight,
bias=bias,
activation=activation,
eps=eps,
residual=residual,
residual_dtype=residual_dtype,
is_rms_norm=is_rms_norm
)
ctx.save_for_backward(residual_out, g, weight, bias, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.g_shape_og = g_shape_og
ctx.activation = activation
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype
y = y.reshape(x_shape_og)
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
@staticmethod
@input_guard
def backward(ctx, dy, *args):
x, g, weight, bias, mean, rstd = ctx.saved_tensors
dy = dy.reshape(-1, dy.shape[-1])
assert dy.shape == x.shape
if ctx.prenorm:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
assert dresidual.shape == x.shape
else:
dresidual = None
dx, dg, dw, db, dresidual_in = layer_norm_gated_bwd(
dy=dy,
x=x,
g=g,
weight=weight,
bias=bias,
activation=ctx.activation,
eps=ctx.eps,
mean=mean,
rstd=rstd,
dresidual=dresidual,
has_residual=ctx.has_residual,
is_rms_norm=ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
)
return (
dx.reshape(ctx.x_shape_og),
dg.reshape(ctx.g_shape_og),
dw,
db,
None,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
class LayerNormGatedLinearFunction(torch.autograd.Function):
@staticmethod
@input_guard
def forward(
ctx,
x: torch.Tensor,
g: torch.Tensor,
norm_weight: torch.Tensor,
norm_bias: torch.Tensor,
linear_weight: torch.Tensor,
linear_bias: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
prenorm: bool = False,
residual_in_fp32: bool = False,
is_rms_norm: bool = False,
):
x_shape_og = x.shape
g_shape_og = g.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
g = g.reshape(-1, g.shape[-1])
if residual is not None:
assert residual.shape == x_shape_og
residual = residual.reshape(-1, residual.shape[-1])
residual_dtype = (
residual.dtype
if residual is not None
else (torch.float if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = layer_norm_gated_fwd(
x=x,
g=g,
weight=norm_weight,
bias=norm_bias,
eps=eps,
residual=residual,
residual_dtype=residual_dtype,
is_rms_norm=is_rms_norm
)
y = y.reshape(x_shape_og)
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
linear_weight = linear_weight.to(dtype)
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
# We don't store y, will be recomputed in the backward pass to save memory
ctx.save_for_backward(residual_out, g, norm_weight, norm_bias, linear_weight, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.g_shape_og = g_shape_og
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype
ctx.linear_bias_is_none = linear_bias is None
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
@staticmethod
@input_guard
def backward(ctx, dout, *args):
x, g, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
dout = dout.reshape(-1, dout.shape[-1])
dy = F.linear(dout, linear_weight.t())
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
assert dy.shape == x.shape
if ctx.prenorm:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
assert dresidual.shape == x.shape
else:
dresidual = None
dx, dg, dnorm_weight, dnorm_bias, dresidual_in, y = layer_norm_gated_bwd(
dy=dy,
x=x,
g=g,
norm_weight=norm_weight,
norm_bias=norm_bias,
eps=ctx.eps,
mean=mean,
rstd=rstd,
dresidual=dresidual,
has_residual=ctx.has_residual,
is_rms_norm=ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
recompute_output=True,
)
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
return (
dx.reshape(ctx.x_shape_og),
dg.reshape(ctx.g_shape_og),
dnorm_weight,
dnorm_bias,
dlinear_weight,
dlinear_bias,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
def layer_norm_gated(
x: torch.Tensor,
g: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
activation: str = 'swish',
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False,
eps: float = 1e-6
):
return LayerNormGatedFunction.apply(
x,
g,
weight,
bias,
activation,
residual,
eps,
prenorm,
residual_in_fp32,
False
)
def rms_norm_gated(
x: torch.Tensor,
g: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
activation: str = 'swish',
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False,
eps: float = 1e-6
):
return LayerNormGatedFunction.apply(
x,
g,
weight,
bias,
activation,
residual,
eps,
prenorm,
residual_in_fp32,
True
)
def layer_norm_swish_gate_linear(
x: torch.Tensor,
g: torch.Tensor,
norm_weight: torch.Tensor,
norm_bias: torch.Tensor,
linear_weight: torch.Tensor,
linear_bias: torch.Tensor,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False,
eps: float = 1e-6
):
return LayerNormGatedLinearFunction.apply(
x,
g,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual,
eps,
prenorm,
residual_in_fp32,
False
)
def rms_norm_swish_gate_linear(
x,
g: torch.Tensor,
norm_weight: torch.Tensor,
norm_bias: torch.Tensor,
linear_weight: torch.Tensor,
linear_bias: torch.Tensor,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False,
eps: float = 1e-6
):
return LayerNormGatedLinearFunction.apply(
x,
g,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual,
eps,
prenorm,
residual_in_fp32,
True
)
class FusedLayerNormGated(nn.Module):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
bias: bool = False,
activation: str = 'swish',
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedLayerNormGated:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
self.activation = activation
if self.activation not in ['swish', 'silu', 'sigmoid']:
raise ValueError(f"Unsupported activation: {self.activation}")
self.register_parameter("weight", None)
self.register_parameter("bias", None)
if elementwise_affine:
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
if bias:
self.bias = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
nn.init.ones_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += f", activation={self.activation}"
s += ")"
return s
def forward(
self,
x: torch.Tensor,
g: torch.Tensor,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False
) -> torch.Tensor:
return layer_norm_gated(
x,
g,
self.weight,
self.bias,
self.activation,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedRMSNormGated(nn.Module):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
activation: str = 'swish',
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedRMSNormGated:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
self.activation = activation
if self.activation not in ['swish', 'silu', 'sigmoid']:
raise ValueError(f"Unsupported activation: {self.activation}")
if elementwise_affine:
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
nn.init.ones_(self.weight)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += f", activation={self.activation}"
s += ")"
return s
def forward(
self,
x: torch.Tensor,
g: torch.Tensor,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False
) -> torch.Tensor:
return rms_norm_gated(
x,
g,
self.weight,
self.bias,
self.activation,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedLayerNormSwishGate(FusedLayerNormGated):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
bias: bool = False,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedLayerNormSwishGate:
super().__init__(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
bias=bias,
eps=eps,
device=device,
dtype=dtype
)
class FusedRMSNormSwishGate(FusedRMSNormGated):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedRMSNormSwishGate:
super().__init__(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
eps=eps,
device=device,
dtype=dtype
)
class FusedLayerNormGatedLinear(nn.Module):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedLayerNormGatedLinear:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
nn.init.ones_(self.weight)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(
self,
x: torch.Tensor,
g: torch.Tensor,
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False
) -> torch.Tensor:
return layer_norm_swish_gate_linear(
x,
g,
self.weight,
self.bias,
weight,
bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedLayerNormSwishGateLinear(FusedLayerNormGatedLinear):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedLayerNormSwishGateLinear:
super().__init__(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
eps=eps,
device=device,
dtype=dtype
)
class FusedRMSNormGatedLinear(nn.Module):
def __init__(
self,
hidden_size,
elementwise_affine: bool = True,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedRMSNormGatedLinear:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
self.register_parameter("weight", None)
self.register_parameter("bias", None)
if elementwise_affine:
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
nn.init.ones_(self.weight)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(
self,
x: torch.Tensor,
g: torch.Tensor,
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
residual: Optional[torch.Tensor] = None,
prenorm: bool = False,
residual_in_fp32: bool = False
) -> torch.Tensor:
return rms_norm_swish_gate_linear(
x,
g,
self.weight,
self.bias,
weight,
bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedRMSNormSwishGateLinear(FusedRMSNormGatedLinear):
def __init__(
self,
hidden_size: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> FusedRMSNormSwishGateLinear:
super().__init__(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
eps=eps,
device=device,
dtype=dtype
)