File size: 15,521 Bytes
7fdd671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# -*- coding: utf-8 -*-

# Copyright (c) 2023, Tri Dao.

from typing import Any, Tuple

import torch
import torch.nn as nn
import triton
import triton.language as tl

from fla.ops.utils.op import exp, log
from fla.utils import input_guard

# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
# version of PyTorch. The following 2 lines are for backward compatibility with
# older PyTorch.
if "all_gather_into_tensor" not in dir(torch.distributed):
    torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base


@triton.heuristics({
    "HAS_SMOOTHING": lambda args: args["label_smoothing"] > 0.0,
})
@triton.jit
def cross_entropy_fwd_kernel(
    loss_ptr,  # data ptrs
    lse_ptr,
    z_loss_ptr,
    logits_ptr,
    labels_ptr,
    label_smoothing,
    logit_scale,
    lse_square_scale,
    ignore_index,
    total_classes,
    class_start_idx,  # Useful for tensor parallel when each rank only has a subset of classes
    n_cols,  # shapes
    n_rows,
    logits_row_stride,  # strides
    BLOCK_SIZE: tl.constexpr,
    HAS_SMOOTHING: tl.constexpr,
    # if SPLIT (e.g. tensor parallel), don't include the LSE in the loss since it's not the final LSE
    SPLIT: tl.constexpr,
):
    row_idx = tl.program_id(0)
    col_block_idx = tl.program_id(1)
    logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
    col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    label_idx = tl.load(labels_ptr + row_idx)
    logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf"))
    logits = logits.to(tl.float32) * logit_scale
    max_logits = tl.max(logits, 0)
    if HAS_SMOOTHING:
        sum_logits = tl.sum(tl.where(col_offsets < n_cols, logits, 0.0), 0)
    lse = log(tl.sum(exp(logits - max_logits), 0)) + max_logits
    tl.store(lse_ptr + col_block_idx * n_rows + row_idx, lse)
    if label_idx == ignore_index:
        loss = 0.0
        z_loss = 0.0
    else:
        label_idx -= class_start_idx
        if label_idx >= col_block_idx * BLOCK_SIZE and label_idx < min(
            n_cols, (col_block_idx + 1) * BLOCK_SIZE
        ):
            logits_label = tl.load(logits_ptr + label_idx) * logit_scale
            if HAS_SMOOTHING:
                loss = (
                    (lse if not SPLIT else 0.0)
                    - label_smoothing * sum_logits / total_classes
                    - (1 - label_smoothing) * logits_label
                )
            else:
                loss = (lse if not SPLIT else 0.0) - logits_label
        else:
            # If label is out of bounds, we set the CE loss to 0.0. But we still want the label_smoothing loss
            if HAS_SMOOTHING:
                loss = label_smoothing * ((lse if not SPLIT else 0.0) - sum_logits / total_classes)
            else:
                loss = 0.0
        if not SPLIT:
            z_loss = lse_square_scale * lse * lse
            loss += z_loss
        else:
            z_loss = 0.0
    tl.store(loss_ptr + col_block_idx * n_rows + row_idx, loss)
    if not SPLIT:
        tl.store(z_loss_ptr + col_block_idx * n_rows + row_idx, z_loss)


@triton.heuristics({
    "HAS_SMOOTHING": lambda args: args["label_smoothing"] > 0.0,
})
@triton.jit
def cross_entropy_bwd_kernel(
    dlogits_ptr,  # data ptrs
    dloss_ptr,
    logits_ptr,
    lse_ptr,
    labels_ptr,
    label_smoothing,
    logit_scale,
    lse_square_scale,
    ignore_index,
    total_classes,
    class_start_idx,  # Useful for tensor parallel when each rank only has a subset of classes
    n_cols,  # shapes
    logits_row_stride,  # strides
    dlogits_row_stride,
    dloss_row_stride,
    BLOCK_SIZE: tl.constexpr,
    HAS_SMOOTHING: tl.constexpr,
):
    row_idx = tl.program_id(0)
    col_block_idx = tl.program_id(1)
    logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
    dlogits_ptr = dlogits_ptr + row_idx * dlogits_row_stride.to(tl.int64)
    col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    label_idx = tl.load(labels_ptr + row_idx)
    if label_idx != ignore_index:
        dloss = tl.load(dloss_ptr + row_idx * dloss_row_stride)
    else:
        dloss = 0.0
    logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to(
        tl.float32
    ) * logit_scale
    lse = tl.load(lse_ptr + row_idx)
    probs = exp(logits - lse)
    probs += 2.0 * lse_square_scale * lse * probs
    label_idx -= class_start_idx
    if HAS_SMOOTHING:
        smooth_negative = label_smoothing / total_classes
        probs = tl.where(col_offsets == label_idx, probs - (1 - label_smoothing), probs) - smooth_negative
    else:
        probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
    tl.store(dlogits_ptr + col_offsets, (dloss * logit_scale) * probs, mask=col_offsets < n_cols)


def fused_cross_entropy_forward(
    logits: torch.Tensor,
    target: torch.Tensor,
    label_smoothing: float = 0.0,
    logit_scale: float = 1.0,
    lse_square_scale: float = 0.0,
    ignore_index: int = -100,
    process_group=None,
):
    n_rows, n_cols = logits.shape
    assert target.shape == (n_rows,)
    world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group)
    total_classes = world_size * n_cols
    rank = 0 if process_group is None else torch.distributed.get_rank(process_group)
    class_start_idx = rank * n_cols

    if logits.stride(-1) != 1:
        logits = logits.contiguous()
    # Set these similar to https://github.com/openai/triton/blob/main/python/tutorials/02-fused-softmax.py
    MAX_BLOCK_SIZE = 64 * 1024
    BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE)
    num_warps = (
        4
        if BLOCK_SIZE < 2048
        else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32))
    )
    # We may split the lse computation across multiple blocks, then do a reduction
    # lse(local_lse) to get the final LSE. This is faster for large n_cols (e.g., > 64k)
    # where having just one thread block processing more than 64k elements is slow.
    split = world_size > 1 or n_cols > MAX_BLOCK_SIZE
    n_splits = (n_cols + BLOCK_SIZE - 1) // BLOCK_SIZE
    loss_shape = (n_splits, n_rows) if n_splits > 1 else (n_rows,)
    losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
    lse = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
    z_losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)

    cross_entropy_fwd_kernel[(n_rows, n_splits)](
        losses,  # data ptrs
        lse,
        z_losses,
        logits,
        target,
        label_smoothing,
        logit_scale,
        lse_square_scale,
        ignore_index,
        total_classes,
        class_start_idx,
        n_cols,  # shapes
        n_rows,
        logits.stride(0),  # strides
        BLOCK_SIZE=BLOCK_SIZE,  # constants
        num_warps=num_warps,
        SPLIT=split
    )

    if split:
        # If there's no label_smoothing, if target are in the vocab of this partition, losses contains
        # - predicted logit, and 0 otherwise.
        # If there's label_smoothing=0.1, for target in the vocab of this partition, losses contains
        # -0.9 * predicted logit - 0.1 * sum logit / total_classes.
        # For target not in the vocab of this partition, losses contains
        # -0.1 * sum logit / total_classes.
        if n_splits > 1:
            lse = torch.logsumexp(lse, dim=0)
            losses = losses.sum(dim=0)
        if world_size > 1:
            lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device)
            torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group)
            handle_losses = torch.distributed.all_reduce(
                losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True
            )
            lse = torch.logsumexp(lse_allgather, dim=0)
            handle_losses.wait()
        # After the allreduce, if there's no label_smoothing, the total losses are - predicted_logit,
        # we just have to add the (global) lse.
        # If there's label_smoothing=0.1, the total losses are
        # -0.9 * predicted_logit - 0.1 * sum logit / total_classes.
        # Again, we just have to add the (global) lse.
        losses += lse
        if lse_square_scale != 0.0:
            z_losses = lse_square_scale * lse.square()
            z_losses.masked_fill_(target == ignore_index, 0.0)
            losses += z_losses
        else:
            z_losses = torch.zeros_like(losses)
        losses.masked_fill_(target == ignore_index, 0.0)

    return losses, z_losses, lse, total_classes, class_start_idx


class CrossEntropyLossFunction(torch.autograd.Function):

    @staticmethod
    @input_guard
    def forward(
        ctx,
        logits,
        target,
        label_smoothing=0.0,
        logit_scale=1.0,
        lse_square_scale=0.0,
        ignore_index=-100,
        inplace_backward=False,
        process_group=None,
    ):
        losses, z_losses, lse, total_classes, class_start_idx = fused_cross_entropy_forward(
            logits,
            target,
            label_smoothing,
            logit_scale,
            lse_square_scale,
            ignore_index,
            process_group,
        )
        ctx.save_for_backward(logits, lse, target)
        ctx.mark_non_differentiable(z_losses)
        ctx.label_smoothing = label_smoothing
        ctx.logit_scale = logit_scale
        ctx.lse_square_scale = lse_square_scale
        ctx.ignore_index = ignore_index
        ctx.total_classes = total_classes
        ctx.class_start_idx = class_start_idx
        ctx.inplace_backward = inplace_backward

        return losses, z_losses

    @staticmethod
    @input_guard
    def backward(ctx, grad_losses, grad_z_losses):
        del grad_z_losses  # z_losses are only for logging.

        logits, lse, target = ctx.saved_tensors
        dlogits = logits if ctx.inplace_backward else torch.empty_like(logits)
        n_rows, n_cols = logits.shape
        BLOCK_SIZE = min(triton.next_power_of_2(n_cols), 4 * 1024)
        num_warps = 4 if BLOCK_SIZE < 2048 else (8 if BLOCK_SIZE < 8192 else 16)
        def grid(META): return (n_rows, triton.cdiv(n_cols, META["BLOCK_SIZE"]))  # noqa
        cross_entropy_bwd_kernel[grid](
            dlogits,  # data ptrs
            grad_losses,
            logits,
            lse,
            target,
            ctx.label_smoothing,
            ctx.logit_scale,
            ctx.lse_square_scale,
            ctx.ignore_index,
            ctx.total_classes,
            ctx.class_start_idx,
            n_cols,  # shapes
            logits.stride(0),  # strides
            dlogits.stride(0),
            grad_losses.stride(0),
            BLOCK_SIZE=BLOCK_SIZE,  # constants
            num_warps=num_warps,
        )
        return dlogits, None, None, None, None, None, None, None, None


def cross_entropy_loss(
    logits: torch.Tensor,
    target: torch.Tensor,
    label_smoothing: float = 0.0,
    logit_scale: float = 1.0,
    lse_square_scale: float = 0.0,
    ignore_index=-100,
    inplace_backward: bool = False,
    process_group=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Arguments:
        logits: [batch, vocab_size]
        target: [batch,]
        label_smoothing: float
        logit_scale: float.
            Multiply logits by this scale before calculating the loss.
        lse_square_scale: float.
            If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.
            This is also referred to as "z-loss".
        ignore_index: int.
            If target == ignore_index, the loss is set to 0.0.
        inplace_backward: bool.
            If True, we do the backward pass in-place by modifying the logits.
            This saves memory.
        process_group:
            if not None, we're doing Tensor Parallel: each process is responsible for
            one part of the vocab. The loss will be aggregated across processes.
    Returns:
        losses: [batch,], float
        z_losses: [batch,], float
    """
    return CrossEntropyLossFunction.apply(
        logits,
        target,
        label_smoothing,
        logit_scale,
        lse_square_scale,
        ignore_index,
        inplace_backward,
        process_group,
    )


class FusedCrossEntropyLoss(nn.Module):
    def __init__(
        self,
        ignore_index: int = -100,
        reduction: str = "mean",
        label_smoothing: float = 0.0,
        logit_scale: float = 1.0,
        lse_square_scale: float = 0.0,
        inplace_backward: bool = False,
        process_group: Any = None,
        return_z_loss: bool = False,
    ):
        """
        Arguments:
            ignore_index: int. If target == ignore_index, the loss is set to 0.0.
            label_smoothing: float
            lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.
                This is also referred to as "z-loss".
            inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits.
                This saves memory.
            process_group: if not None, we're doing Tensor Parallel: each process is responsible for
                one part of the vocab. The loss will be aggregated across processes.
            return_z_loss: bool. If True, we return the component of the loss contributed by
                the lse_square_scale value. This value is only for logging and does not support
                backprop.
        """
        super().__init__()
        if reduction not in ["mean", "none", "sum"]:
            raise NotImplementedError("Only support reduction = 'mean' or 'none' or 'sum'")
        self.ignore_index = ignore_index
        self.reduction = reduction
        self.label_smoothing = label_smoothing
        self.logit_scale = logit_scale
        self.lse_square_scale = lse_square_scale
        self.inplace_backward = inplace_backward
        self.process_group = process_group
        self.return_z_loss = return_z_loss

    def forward(self, input, target):
        """
        Arguments:
            input: (batch, vocab_size)
            target: (batch,)
        Returns:
            losses: (batch,) if reduction is 'none', else (1,), dtype float
            z_loss: (batch,) if reduction is 'none', else (1,), dtype float (if self.return_z_loss)
        """
        assert input.is_cuda and target.is_cuda, "Only support CUDA tensors"
        loss, z_loss = cross_entropy_loss(
            input,
            target,
            label_smoothing=self.label_smoothing,
            logit_scale=self.logit_scale,
            lse_square_scale=self.lse_square_scale,
            ignore_index=self.ignore_index,
            inplace_backward=self.inplace_backward,
            process_group=self.process_group,
        )
        if self.reduction == "mean":
            loss = loss.sum() / (target != self.ignore_index).sum()
        elif self.reduction == "sum":
            loss = loss.sum()
        else:
            loss = loss

        if not self.return_z_loss:
            return loss

        if self.reduction == "mean":
            z_loss = z_loss.sum() / (target != self.ignore_index).sum()
        elif self.reduction == "sum":
            z_loss = z_loss.sum()
        else:
            z_loss = z_loss

        return loss, z_loss