Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
File size: 7,079 Bytes
b3afdde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""EMOVA model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING

from .configuration_qwen2vit import Qwen2VLVisionConfig

logger = logging.get_logger(__name__)


class EMOVAConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`EMOVAForConditionalGeneration`]. It is used to instantiate an
    EMOVA model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `CLIPVisionConfig`):
            The config object or dictionary of the vision backbone.
        text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
            The config object or dictionary of the text backbone.
        ignore_index (`int`, *optional*, defaults to -100):
            The ignore index for the loss function.
        image_token_index (`int`, *optional*, defaults to 32000):
            The image token index to encode the image prompt.
        projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The activation function used by the multimodal projector.
        vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
            The feature selection strategy used to select the vision feature from the vision backbone.
            Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
            If `"full"`, the full vision features are used.
        vision_feature_layer (`int`, *optional*, defaults to -2):
            The index of the layer to select the vision feature.
        image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
            A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.

    Example:

    ```python
    >>> from transformers import EMOVAForConditionalGeneration, EMOVAConfig, CLIPVisionConfig, LlamaConfig

    >>> # Initializing a CLIP-vision config
    >>> vision_config = CLIPVisionConfig()

    >>> # Initializing a Llama config
    >>> text_config = LlamaConfig()

    >>> # Initializing a EMOVA style configuration
    >>> configuration = EMOVAConfig(vision_config, text_config)

    >>> # Initializing a model from the style configuration
    >>> model = EMOVAForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "emova"
    is_composition = False

    def __init__(
            self,
            vision_config=None,
            mm_projector_config=None,
            text_config=None,
            ignore_index=-100,
            image_token_index=32000,
            vision_feature_select_strategy="default",
            vision_feature_layer=-2,
            is_native_resolution=True,
            image_grid_pinpoints=None,
            use_image_newline_parameter=False,
            tie_word_embeddings=False,
            **kwargs,
    ):
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index

        if vision_feature_select_strategy not in ["default", "full"]:
            raise ValueError(
                "vision_feature_select_strategy should be one of 'default', 'full'."
                f"Got: {vision_feature_select_strategy}"
            )

        # self.vision_feature_select_strategy = vision_feature_select_strategy
        # self.vision_feature_layer = vision_feature_layer
        # image_grid_pinpoints = (
        #     image_grid_pinpoints
        #     if image_grid_pinpoints is not None
        #     else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
        # )
        # self.is_native_resolution = is_native_resolution
        # self.image_grid_pinpoints = image_grid_pinpoints if not self.is_native_resolution else None
        # self.use_image_newline_parameter = use_image_newline_parameter

        if isinstance(vision_config, dict):
            vision_config = Qwen2VLVisionConfig(**vision_config)
        elif vision_config is None:
            vision_config = Qwen2VLVisionConfig(
                depth=32,
                embed_dim=1280,
                hidden_act="quick_gelu",
                hidden_size=3584,
                in_channels=3,
                in_chans=3,
                mlp_ratio=4,
                model_type="qwen2_vl",
                num_heads=16,
                patch_size=14,
                spatial_merge_size=2,
                spatial_patch_size=14,
                temporal_patch_size=2,
                initializer_range=0.02,
            )

        # if isinstance(vision_config, dict):
        #     vision_config["model_type"] = (
        #         vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
        #     )
        #     vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
        # elif vision_config is None:
        #     vision_config = CONFIG_MAPPING["clip_vision_model"](
        #         intermediate_size=4096,
        #         hidden_size=1024,
        #         patch_size=14,
        #         image_size=336,
        #         num_hidden_layers=24,
        #         num_attention_heads=16,
        #         vocab_size=32000,
        #         projection_dim=768,
        #     )

        self.vision_config = vision_config
        self.mm_projector_config = mm_projector_config
        if isinstance(text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
            text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
        elif text_config is None:
            text_config = CONFIG_MAPPING["llama"]()

        self.text_config = text_config
        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)