Commit
·
6a7f508
1
Parent(s):
fe21650
[add]: test parser script
Browse files- scripts/calculate_metrics.py +0 -0
- scripts/test_parser.py +148 -0
scripts/calculate_metrics.py
ADDED
|
File without changes
|
scripts/test_parser.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from typing import Optional, Tuple
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from datasets import DatasetDict, load_dataset
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 12 |
+
|
| 13 |
+
def check_base_path(path: str) -> Optional[str]:
|
| 14 |
+
if path is not None:
|
| 15 |
+
base_path = os.path.basename(path)
|
| 16 |
+
if os.path.exists(base_path):
|
| 17 |
+
return path
|
| 18 |
+
else:
|
| 19 |
+
raise Exception(f'Path not found {base_path}')
|
| 20 |
+
return path
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
DEFAULT_MODEL_ID = 'EmbeddingStudio/query-parser-falcon-7b-instruct'
|
| 25 |
+
DEFAULT_DATASET = 'EmbeddingStudio/query-parsing-instructions-falcon'
|
| 26 |
+
DEFAULT_SPLIT = 'test'
|
| 27 |
+
DEFAULT_INSTRUCTION_FIELD = 'text'
|
| 28 |
+
DEFAULT_RESPONSE_DELIMITER = '## Response:\n'
|
| 29 |
+
DEFAULT_CATEGORY_DELIMITER = '## Category:'
|
| 30 |
+
DEFAULT_OUTPUT_PATH = f'{DEFAULT_MODEL_ID.split("/")[-1]}-test.json'
|
| 31 |
+
|
| 32 |
+
parser = argparse.ArgumentParser(description='EmbeddingStudio script for testing Zero-Shot Search Query Parsers')
|
| 33 |
+
parser.add_argument("--model-id",
|
| 34 |
+
help=f"Huggingface model ID (default: {DEFAULT_MODEL_ID})",
|
| 35 |
+
default=DEFAULT_MODEL_ID,
|
| 36 |
+
type=str,
|
| 37 |
+
)
|
| 38 |
+
parser.add_argument("--dataset-name",
|
| 39 |
+
help=f"Huggingface dataset name which contains instructions (default: {DEFAULT_DATASET})",
|
| 40 |
+
default=DEFAULT_DATASET,
|
| 41 |
+
type=str,
|
| 42 |
+
)
|
| 43 |
+
parser.add_argument("--dataset-split",
|
| 44 |
+
help=f"Huggingface dataset split name (default: {DEFAULT_SPLIT})",
|
| 45 |
+
default=DEFAULT_SPLIT,
|
| 46 |
+
type=str,
|
| 47 |
+
)
|
| 48 |
+
parser.add_argument("--dataset-instructions-field",
|
| 49 |
+
help=f"Huggingface dataset field with instructions (default: {DEFAULT_INSTRUCTION_FIELD})",
|
| 50 |
+
default=DEFAULT_INSTRUCTION_FIELD,
|
| 51 |
+
type=str,
|
| 52 |
+
)
|
| 53 |
+
parser.add_argument("--instructions-response-delimiter",
|
| 54 |
+
help=f"Instruction response delimiter (default: {DEFAULT_RESPONSE_DELIMITER})",
|
| 55 |
+
default=DEFAULT_RESPONSE_DELIMITER,
|
| 56 |
+
type=str,
|
| 57 |
+
)
|
| 58 |
+
parser.add_argument("--instructions-category-delimiter",
|
| 59 |
+
help=f"Instruction category name delimiter (default: {DEFAULT_CATEGORY_DELIMITER})",
|
| 60 |
+
default=DEFAULT_CATEGORY_DELIMITER,
|
| 61 |
+
type=str,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
parser.add_argument("--output",
|
| 65 |
+
help=f"JSON file with test results (default: {DEFAULT_OUTPUT_PATH})",
|
| 66 |
+
default=DEFAULT_OUTPUT_PATH,
|
| 67 |
+
type=check_base_path,
|
| 68 |
+
)
|
| 69 |
+
args = parser.parse_args()
|
| 70 |
+
return args
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 75 |
+
model_id,
|
| 76 |
+
trust_remote_code=True,
|
| 77 |
+
add_prefix_space=True,
|
| 78 |
+
use_fast=False,
|
| 79 |
+
)
|
| 80 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 81 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": 0})
|
| 82 |
+
return tokenizer, model
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@torch.no_grad()
|
| 86 |
+
def predict(
|
| 87 |
+
tokenizer: AutoTokenizer,
|
| 88 |
+
model: AutoModelForCausalLM,
|
| 89 |
+
dataset: DatasetDict,
|
| 90 |
+
index: int,
|
| 91 |
+
field_name: str = 'text',
|
| 92 |
+
response_delimiter: str = '## Response:\n',
|
| 93 |
+
category_delimiter: str = '## Category: '
|
| 94 |
+
) -> Tuple[dict, dict, str]:
|
| 95 |
+
input_text = dataset[index][field_name].split(response_delimiter)[0] + response_delimiter
|
| 96 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 97 |
+
real = json.loads(dataset[index][field_name].split(response_delimiter)[-1])
|
| 98 |
+
category = dataset[index][field_name].split(category_delimiter)[-1].split('\n')[0]
|
| 99 |
+
|
| 100 |
+
# Generating text
|
| 101 |
+
output = model.generate(input_ids.to('cuda'),
|
| 102 |
+
max_new_tokens=1000,
|
| 103 |
+
do_sample=True,
|
| 104 |
+
temperature=0.05,
|
| 105 |
+
pad_token_id=50256
|
| 106 |
+
)
|
| 107 |
+
parsed = json.loads(tokenizer.decode(output[0], skip_special_tokens=True).split(response_delimiter)[-1])
|
| 108 |
+
|
| 109 |
+
return [parsed, real, category]
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
@torch.no_grad()
|
| 113 |
+
def test_model(model_id: str,
|
| 114 |
+
dataset_name: str,
|
| 115 |
+
split_name: str,
|
| 116 |
+
field_name: str,
|
| 117 |
+
response_delimiter: str,
|
| 118 |
+
category_delimiter: str,
|
| 119 |
+
output_path: str,
|
| 120 |
+
|
| 121 |
+
):
|
| 122 |
+
dataset = load_dataset(dataset_name, split=split_name)
|
| 123 |
+
tokenizer, model = load_model(model_id)
|
| 124 |
+
model.eval()
|
| 125 |
+
|
| 126 |
+
test_results = []
|
| 127 |
+
for index in tqdm(range(len(dataset[split_name]))):
|
| 128 |
+
try:
|
| 129 |
+
test_results.append(predict(tokenizer, model, dataset[split_name], index, field_name, response_delimiter, category_delimiter))
|
| 130 |
+
except Exception as e:
|
| 131 |
+
continue
|
| 132 |
+
|
| 133 |
+
with open(output_path, 'w') as f:
|
| 134 |
+
json.dump(test_results)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
if __name__ == '__main__':
|
| 139 |
+
args = parse_args()
|
| 140 |
+
test_model(
|
| 141 |
+
args.model_id,
|
| 142 |
+
args.dataset_name,
|
| 143 |
+
args.dataset_split,
|
| 144 |
+
args.dataset_instructions_field,
|
| 145 |
+
args.instructions_response_delimiter,
|
| 146 |
+
args.instructions_category_delimiter,
|
| 147 |
+
args.output
|
| 148 |
+
)
|