|
import copy |
|
from typing import Optional, List |
|
import pickle as cp |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, Tensor |
|
|
|
|
|
class TransformerDecoder(nn.Module): |
|
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): |
|
super().__init__() |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
self.return_intermediate = return_intermediate |
|
|
|
def forward(self,tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
output = tgt |
|
T,B,C = memory.shape |
|
intermediate = [] |
|
for n,layer in enumerate(self.layers): |
|
residual=True |
|
output,ws = layer(output, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos,residual=residual) |
|
if self.return_intermediate: |
|
intermediate.append(self.norm(output)) |
|
if self.norm is not None: |
|
output = self.norm(output) |
|
if self.return_intermediate: |
|
intermediate.pop() |
|
intermediate.append(output) |
|
|
|
if self.return_intermediate: |
|
return torch.stack(intermediate) |
|
return output |
|
|
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
def __init__(self, d_model, nhead, dim_feedforward=1024, dropout=0.1, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
residual=True): |
|
|
|
|
|
q = k = self.with_pos_embed(tgt, query_pos) |
|
tgt2,ws = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask) |
|
tgt = self.norm1(tgt) |
|
tgt2,ws = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
need_weights = True, |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
|
|
|
|
|
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
tgt = self.norm3(tgt) |
|
return tgt,ws |
|
|
|
|
|
def forward_pre(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2 = self.norm1(tgt) |
|
q = k = self.with_pos_embed(tgt2, query_pos) |
|
tgt2,ws = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask) |
|
|
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt2 = self.norm2(tgt) |
|
tgt2,attn_weights = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
|
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt2 = self.norm3(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
return tgt,attn_weights |
|
|
|
def forward(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
residual=True): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) |
|
return self.forward_post(tgt, memory, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos,residual) |
|
|
|
class TransformerDecoderV1(nn.Module): |
|
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): |
|
super().__init__() |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
self.return_intermediate = return_intermediate |
|
|
|
def forward(self,tgt, memory, |
|
memory_global, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
output = tgt |
|
T,B,C = memory.shape |
|
intermediate = [] |
|
for n,layer in enumerate(self.layers): |
|
residual=True |
|
output,ws = layer(output, memory, |
|
memory_global, |
|
|
|
tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos,residual=residual) |
|
|
|
if self.return_intermediate: |
|
intermediate.append(self.norm(output)) |
|
if self.norm is not None: |
|
output = self.norm(output) |
|
|
|
|
|
if self.return_intermediate: |
|
intermediate.pop() |
|
intermediate.append(output) |
|
|
|
if self.return_intermediate: |
|
return torch.stack(intermediate) |
|
|
|
return output,ws |
|
|
|
|
|
class TransformerDecoderLayerV1(nn.Module): |
|
def __init__(self, d_model, nhead, dim_feedforward=1024, dropout=0.1, |
|
activation="relu", normalize_before=False, lam = [1,0]): |
|
super().__init__() |
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
|
|
self.lam_l = lam[0] |
|
self.lam_g = lam[1] |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt, memory, |
|
memory_global, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
residual=True): |
|
|
|
|
|
q = k = self.with_pos_embed(tgt, query_pos) |
|
tgt2,ws = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask) |
|
tgt = self.norm1(tgt) |
|
tgt2,ws = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
need_weights = True, |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
|
|
|
|
|
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
tgt = self.norm3(tgt) |
|
return tgt,ws |
|
|
|
|
|
def forward_pre(self, tgt, memory, |
|
memory_global, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2 = self.norm1(tgt) |
|
q = k = self.with_pos_embed(tgt2, query_pos) |
|
tgt2,ws = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask) |
|
|
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt2 = self.norm2(tgt) |
|
if memory.shape[0] == 1: |
|
tgt2_fine,attn_weights = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
tgt2 = tgt2_fine |
|
attn_weights = attn_weights |
|
|
|
else: |
|
tgt2_fine,attn_weights = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
tgt2_global,attn_weights_global = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory_global, pos), |
|
value=memory_global, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
|
|
tgt2 = tgt2_fine*self.lam_l + tgt2_global*self.lam_g |
|
|
|
attn_weights = attn_weights*self.lam_l + attn_weights_global*self.lam_g |
|
|
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt2 = self.norm3(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
|
|
return tgt, attn_weights |
|
|
|
def forward(self, tgt, memory, |
|
memory_global, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
residual=True): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt, memory, memory_global, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) |
|
return self.forward_post(tgt, memory, memory_global, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos,residual) |
|
|
|
|
|
|
|
def _get_clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
|
|
def _get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |