CHE-Master / factory /utils.py
Elfenreigen's picture
Upload 8 files
09cc9e3 verified
import numpy as np
import io
import os
import time
import random
from collections import defaultdict, deque
import datetime
import subprocess
import torch
import torch.distributed as dist
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if self.count == 0:
return self.total
else:
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value
)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def global_avg(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {:.4f}".format(name, meter.global_avg)
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def compute_acc(logits, label, reduction='mean'):
ret = (torch.argmax(logits, dim=1) == label).float()
if reduction == 'none':
return ret.detach()
elif reduction == 'mean':
return ret.mean().item()
def compute_n_params(model, return_str=True):
tot = 0
for p in model.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
print('on tip')
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
print('rank')
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
# args.distributed = False
# torch.cuda.set_device(args.gpu)
# args.dist_backend = 'gloo'
# print('| distributed init (rank {}): {}, gpu {}'.format(
# args.rank, args.dist_url, args.gpu), flush=True)
# print("flag1")
# print(args)
# torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
# world_size=args.world_size, rank=args.rank)
# print("flag2")
# torch.distributed.barrier()
# setup_for_distributed(args.rank == 0)
args.distributed = False
args.dist_url ='tcp://localhost:12345'
args.world_size=1
args.rank = 0
# def init_distributed_mode(args,port='29511'):
# num_gpus = torch.cuda.device_count()
# if args.dist_on_itp:
# args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
# args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
# args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
# args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
# os.environ['LOCAL_RANK'] = str(args.gpu)
# os.environ['RANK'] = str(args.rank)
# os.environ['WORLD_SIZE'] = str(args.world_size)
# # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
# elif "SLURM_JOB_ID" in os.environ:
# print('SLURM_JOB_ID')
# args.rank = int(os.environ["SLURM_PROCID"])
# args.world_size = int(os.environ["SLURM_NTASKS"])
# node_list = os.environ["SLURM_NODELIST"]
# addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# # specify master port
# if port is not None:
# os.environ["MASTER_PORT"] = str(port)
# elif "MASTER_PORT" not in os.environ:
# os.environ["MASTER_PORT"] = "29400"
# if "MASTER_ADDR" not in os.environ:
# os.environ["MASTER_ADDR"] = addr
# os.environ["WORLD_SIZE"] = str(args.world_size)
# os.environ["LOCAL_RANK"] = str(args.rank % num_gpus)
# os.environ["RANK"] = os.environ["WORLD_SIZE"]
# args.gpu = args.rank % torch.cuda.device_count()
# elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
# print('RANK')
# args.rank = int(os.environ["RANK"])
# args.world_size = int(os.environ['WORLD_SIZE'])
# args.gpu = int(os.environ['LOCAL_RANK'])
# else:
# print('Not using distributed mode')
# args.distributed = False
# return
# args.distributed = True
# torch.cuda.set_device(args.gpu)
# args.dist_backend = 'nccl'
# print('| distributed init (rank {}): {}, gpu {}'.format(
# args.rank, args.dist_url, args.gpu), flush=True)
# torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
# world_size=args.world_size, rank=args.rank)
# print('Init_process_group')
# torch.distributed.barrier()
# print('distributed.barrier')
# setup_for_distributed(args.rank == 0)
# print('Finished distributed')
# def init_distributed_mode(args):
# # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
# # args.local_rank = os.environ['LOCAL_RANK']
# if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
# args.rank = int(os.environ["RANK"])
# args.world_size = int(os.environ['WORLD_SIZE'])
# args.local_rank = int(os.environ['LOCAL_RANK'])
# elif 'SLURM_PROCID' in os.environ:
# args.rank = int(os.environ['SLURM_PROCID'])
# args.local_rank = args.rank % torch.cuda.device_count()
# else:
# print('Not using distributed mode')
# args.distributed = False
# return
# args.distributed = True
# torch.cuda.set_device(args.local_rank)
# args.dist_backend = 'nccl'
# print('| distributed init (rank {}): {}'.format(
# args.rank, args.dist_url), flush=True)
# torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
# world_size=args.world_size, rank=args.rank)
# torch.distributed.barrier()
# setup_for_distributed(args.rank == 0)
# def init_distributed_mode(args):
# # if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
# # args.rank = int(os.environ["RANK"])
# # args.world_size = int(os.environ['WORLD_SIZE'])
# # args.gpu = int(os.environ['LOCAL_RANK'])
# # elif 'SLURM_PROCID' in os.environ:
# # args.rank = int(os.environ['SLURM_PROCID'])
# # args.gpu = args.rank % torch.cuda.device_count()
# # else:
# # print('Not using distributed mode')
# # args.distributed = False
# # return
# # rank = int(os.environ['RANK']) # system env process ranks\
# # print(torch.distributed.get_world_size())
# args.distributed = True
# # torch.cuda.set_device(args.gpu)
# num_gpus = torch.cuda.device_count() # Returns the number of GPUs available
# torch.cuda.set_device(args.rank % num_gpus)
# # args.gpu = args.rank % torch.cuda.device_count()
# args.dist_backend = 'nccl'
# print('| distributed init (rank {}): {}'.format(
# args.rank, args.dist_url), flush=True)
# torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
# world_size=args.world_size, rank=args.rank)
# torch.distributed.barrier()
# print('using distributed mode',args.rank, args.dist_url)
# setup_for_distributed(args.rank == 0)
# # export MASTER_ADDR=localhost
# export MASTER_PORT=5678