File size: 9,314 Bytes
e551dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import math
from math import pi as PI

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch_geometric.transforms as T
from torch.nn import ModuleList, Parameter
from torch_geometric.nn import HANConv, HEATConv, HGTConv, Linear
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.dense.linear import Linear
# from dataset import 
from torch_geometric.nn.inits import glorot, zeros
from torch_geometric.utils import softmax
from torch_scatter import scatter

from util import get_angle, get_theta, triplets

class Smodel(nn.Module):
    def __init__(self,  h_channel=16,input_featuresize=32,localdepth=2,num_interactions=3,finaldepth=3,share='0',batchnorm="True"):
        super(Smodel,self).__init__()
        self.training=True
        self.h_channel = h_channel
        self.input_featuresize=input_featuresize
        self.localdepth = localdepth
        self.num_interactions=num_interactions
        self.finaldepth=finaldepth
        self.batchnorm = batchnorm        
        self.activation=nn.ReLU()
        self.att = Parameter(torch.ones(4),requires_grad=True)

        num_gaussians=(1,1,1)
        self.mlp_geo = ModuleList()
        for i in range(self.localdepth):
            if i == 0:
                self.mlp_geo.append(Linear(sum(num_gaussians), h_channel))
            else:
                self.mlp_geo.append(Linear(h_channel, h_channel))
            if self.batchnorm == "True":
                self.mlp_geo.append(nn.BatchNorm1d(h_channel))
            self.mlp_geo.append(self.activation)            
         
        self.mlp_geo_backup = ModuleList()
        for i in range(self.localdepth):
            if i == 0:
                self.mlp_geo_backup.append(Linear(4, h_channel))
            else:
                self.mlp_geo_backup.append(Linear(h_channel, h_channel))
            if self.batchnorm == "True":
                self.mlp_geo_backup.append(nn.BatchNorm1d(h_channel))
            self.mlp_geo_backup.append(self.activation)        
        self.translinear=Linear(input_featuresize+1, self.h_channel)
        self.interactions= ModuleList()
        for i in range(self.num_interactions):
            block = SPNN(
                in_ch=self.input_featuresize,
                hidden_channels=self.h_channel,
                activation=self.activation,
                finaldepth=self.finaldepth,
                batchnorm=self.batchnorm,
                num_input_geofeature=self.h_channel
            )
            self.interactions.append(block)
        self.reset_parameters()
    def reset_parameters(self):
        for lin in self.mlp_geo:
            if isinstance(lin, Linear):
                torch.nn.init.xavier_uniform_(lin.weight)
                lin.bias.data.fill_(0)
        for i in (self.interactions):
                i.reset_parameters()

    def single_forward(self, input_feature,coords,edge_index,edge_index_2rd, edx_jk, edx_ij,batch,num_edge_inside,edge_rep):
        if edge_rep:
            i, j, k = edge_index_2rd
            edge_index1,edge_index2=  edge_index
            edge_index_all=torch.cat([edge_index1,edge_index2],1)
            distance_ij=(coords[j] - coords[i]).norm(p=2, dim=1)
            distance_jk=(coords[j] - coords[k]).norm(p=2, dim=1)
            theta_ijk = get_angle(coords[j] - coords[i], coords[k] - coords[j])
            geo_encoding_1st=distance_ij[:,None]
            geo_encoding=torch.cat([geo_encoding_1st,distance_jk[:,None],theta_ijk[:,None]],dim=-1)
        else:    
            coords_j = coords[edge_index[0]]
            coords_i = coords[edge_index[1]]
            geo_encoding=torch.cat([coords_j,coords_i],dim=-1)
        if edge_rep:
            for lin in self.mlp_geo:
                geo_encoding=lin(geo_encoding)
        else:
            for lin in self.mlp_geo_backup:
                geo_encoding=lin(geo_encoding)
            geo_encoding=torch.zeros_like(geo_encoding,device=geo_encoding.device,dtype=geo_encoding.dtype)
        node_feature= input_feature
        node_feature_list=[]
        for interaction in self.interactions:
            node_feature =  interaction(node_feature,geo_encoding,edge_index_2rd,edx_jk,edx_ij,num_edge_inside,self.att)
            node_feature_list.append(node_feature)
        return node_feature_list
    def forward(self, input_feature, coords,edge_index,edge_index_2rd, edx_jk, edx_ij,batch,num_edge_inside,edge_rep):
        output=self.single_forward(input_feature,coords,edge_index,edge_index_2rd, edx_jk, edx_ij,batch,num_edge_inside,edge_rep)
        return output
    
class SPNN(torch.nn.Module):
    def __init__(
        self,
        in_ch,
        hidden_channels,
        activation=torch.nn.ReLU(),
        finaldepth=3,
        batchnorm="True",
        num_input_geofeature=13
    ):
        super(SPNN, self).__init__()
        self.activation = activation
        self.finaldepth = finaldepth
        self.batchnorm = batchnorm
        self.num_input_geofeature=num_input_geofeature
        
        self.WMLP_list = ModuleList()
        for _ in range(4):
            WMLP = ModuleList()
            for i in range(self.finaldepth + 1):
                if i == 0:
                    WMLP.append(Linear(hidden_channels*3+num_input_geofeature, hidden_channels))
                else:
                    WMLP.append(Linear(hidden_channels, hidden_channels))  
                if self.batchnorm == "True":
                    WMLP.append(nn.BatchNorm1d(hidden_channels))
                WMLP.append(self.activation)
            self.WMLP_list.append(WMLP)
        self.reset_parameters()

    def reset_parameters(self):
        for mlp in self.WMLP_list:
            for lin in mlp:
                if isinstance(lin, Linear):
                    torch.nn.init.xavier_uniform_(lin.weight)
                    lin.bias.data.fill_(0)
    def forward(self, node_feature,geo_encoding,edge_index_2rd,edx_jk,edx_ij,num_edge_inside,att):
        i,j,k = edge_index_2rd
        if node_feature is None:
            concatenated_vector = geo_encoding
        else:
            node_attr_0st = node_feature[i]
            node_attr_1st = node_feature[j]
            node_attr_2 = node_feature[k]
            concatenated_vector = torch.cat(
                [
                    node_attr_0st,
                    node_attr_1st,node_attr_2,
                    geo_encoding,
                ],
                dim=-1,
            )
        x_i = concatenated_vector
        
        edge1_edge1_mask = (edx_ij < num_edge_inside) & (edx_jk < num_edge_inside) 
        edge1_edge2_mask = (edx_ij < num_edge_inside) & (edx_jk >= num_edge_inside)
        edge2_edge1_mask = (edx_ij >= num_edge_inside) & (edx_jk < num_edge_inside)
        edge2_edge2_mask = (edx_ij >= num_edge_inside) & (edx_jk >= num_edge_inside)  
        masks=[edge1_edge1_mask,edge1_edge2_mask,edge2_edge1_mask,edge2_edge2_mask]
        
        x_output=torch.zeros(x_i.shape[0],self.WMLP_list[0][0].weight.shape[0],device=x_i.device)
        for index in range(4):
            WMLP=self.WMLP_list[index]
            x=x_i[masks[index]]
            for lin in WMLP:
                x=lin(x)    
            x = F.leaky_relu(x)*att[index]
            x_output[masks[index]]+=x
    
        out_feature = scatter(x_output, i, dim=0, reduce='add')  
        return out_feature

class HGT(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels, num_heads, num_layers):
        super().__init__()

        self.lin_dict = torch.nn.ModuleDict()
        for node_type in ["vertices"]:
            self.lin_dict[node_type] = Linear(-1, hidden_channels)

        self.convs = torch.nn.ModuleList()
        for _ in range(num_layers):
            conv = HGTConv(hidden_channels, hidden_channels, (['vertices'],[('vertices', 'inside', 'vertices'), ('vertices', 'apart', 'vertices')]),
                           num_heads, group='sum')
            self.convs.append(conv)

        self.lin = Linear(hidden_channels, out_channels)

    def forward(self, x_dict, edge_index_dict):
        for node_type, x in x_dict.items():
            x_dict[node_type]=self.lin_dict[node_type](x).relu_()

        for conv in self.convs:
            x_dict = conv(x_dict, edge_index_dict)
        return self.lin(x_dict['vertices'])
class HAN(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels, num_heads, num_layers):
        super().__init__()

        self.lin_dict = torch.nn.ModuleDict()
        for node_type in ["vertices"]:
            self.lin_dict[node_type] = Linear(-1, hidden_channels)

        self.convs = torch.nn.ModuleList()
        for _ in range(num_layers):
            conv = HANConv(hidden_channels, hidden_channels, (['vertices'],[('vertices', 'inside', 'vertices'), ('vertices', 'apart', 'vertices')]),
                           num_heads)
            self.convs.append(conv)

        self.lin = Linear(hidden_channels, out_channels)

    def forward(self, x_dict, edge_index_dict):
        for node_type, x in x_dict.items():
            x_dict[node_type]=self.lin_dict[node_type](x).relu_()

        for conv in self.convs:
            x_dict = conv(x_dict, edge_index_dict)
        return self.lin(x_dict['vertices'])