File size: 7,018 Bytes
e551dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch.utils.data as data
import os
import os.path
import torch
import numpy as np
import pandas as pd
import sys
import pickle
import time
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from PIL import Image
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
from torchvision.datasets import VisionDataset
from torch.utils.data import Dataset
from datetime import date, timedelta,datetime
import random
import pickle as pkl
import string

valid_chars = 'EFHILOTUYZ'

alphabetic_labels = [char1 + char2 for char1 in valid_chars for char2 in valid_chars]
alphabetic_labels.sort()
label_mapping = {label: idx for idx, label in enumerate(alphabetic_labels)} # to number
reverse_label_mapping = {v: k for k, v in label_mapping.items()} # to alphabetic

single_alphabetic_labels=[char1 for char1 in valid_chars]
single_alphabetic_labels.sort()
single_label_mapping = {label: idx for idx, label in enumerate(single_alphabetic_labels)}
single_reverse_label_mapping = {v: k for k, v in single_label_mapping.items()}

def get_mnist_dataset(data_dir='data/multi_mnist.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
    for entry in dataset:
        entry.y -= 10
                
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def get_building_dataset(data_dir='data/building_with_index.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
    for entry in dataset:
        entry.y = label_mapping[entry.y]  
         
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def get_mbuilding_dataset(data_dir='data/mp_building.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
    for entry in dataset:
        entry.y = label_mapping[entry.y]  
         
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def get_sbuilding_dataset(data_dir='data/single_building.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
    for entry in dataset:
        entry.y = single_label_mapping[entry.y]  
         
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def get_smnist_dataset(data_dir='data/single_mnist.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
         
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def get_dbp_dataset(data_dir='data/triple_building.pkl',Seed=0,test_ratio=0.2):

    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed) 

    with open(data_dir, 'rb') as f:
        dataset = pkl.load(f)
    for entry in dataset:
        entry.y = 1 if entry.y>=1 else 0
         
    np.random.shuffle(dataset)
    val_test_split = int(np.around( test_ratio * len(dataset) ))
    train_val_split = int(len(dataset)-2*val_test_split)
    train_ds = dataset[:train_val_split]
    val_ds = dataset[train_val_split:train_val_split+val_test_split]
    test_ds = dataset[train_val_split+val_test_split:]  

    print(data_dir)
    print('Train: ' +str(len(train_ds)))
    print('Val  : ' +str(len(val_ds)))
    print('Test : ' +str(len(test_ds)))  
        
    return train_ds,val_ds,test_ds

def affine_transform_to_range(ds, target_range=(-1, 1)):
    # Find the extent (min and max) of coordinates in both x and y directions
    for item in ds:
        min_x  = torch.min(item.pos[:,0])
        min_y  = torch.min(item.pos[:,1])
        
        max_x  = torch.max(item.pos[:,0])
        max_y  = torch.max(item.pos[:,1])
        
        scale_x = (target_range[1] - target_range[0]) / (max_x - min_x)
        scale_y = (target_range[1] - target_range[0]) / (max_y - min_y)
        translate_x = target_range[0] - min_x * scale_x
        translate_y = target_range[0] - min_y * scale_y

        # Apply the affine transformation to 
        item.pos[:,0] = item.pos[:,0] * scale_x + translate_x
        item.pos[:,1] = item.pos[:,1] * scale_y + translate_y
    return ds

class CustomDataset(Dataset):
    def __init__(self, data_list):
        super(CustomDataset, self).__init__()
        self.data_list = data_list
    
    def len(self):
        return len(self.data_list)
    
    def get(self, idx):
        return self.data_list[idx]
    
if __name__ == '__main__':
    a,b,c=get_mnist_dataset()
    print("")