Create handler.py
Browse files- handler.py +37 -0
handler.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
import base64
|
5 |
+
import io
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self):
|
9 |
+
self.synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
10 |
+
self.embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
11 |
+
|
12 |
+
def __call__(self, data):
|
13 |
+
text = data.get("inputs", "")
|
14 |
+
speaker_embedding = torch.tensor(self.embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
15 |
+
|
16 |
+
# Generate speech using the synthesiser
|
17 |
+
speech = self.synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
|
18 |
+
|
19 |
+
# Convert numpy audio array to bytes
|
20 |
+
audio_bytes = io.BytesIO()
|
21 |
+
sf.write(audio_bytes, speech["audio"], samplerate=speech["sampling_rate"], format='WAV')
|
22 |
+
audio_bytes.seek(0)
|
23 |
+
audio_base64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
|
24 |
+
|
25 |
+
# Create response
|
26 |
+
response = {
|
27 |
+
"statusCode": 200,
|
28 |
+
"body": {
|
29 |
+
"audio": audio_base64,
|
30 |
+
"sampling_rate": speech["sampling_rate"]
|
31 |
+
},
|
32 |
+
"headers": {
|
33 |
+
"Content-Type": "audio/wav"
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
return response
|