Attempt to reduce latency by moving more to init
Browse files- handler.py +6 -6
handler.py
CHANGED
@@ -22,19 +22,19 @@ class EndpointHandler:
|
|
22 |
self.model= SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
23 |
self.processor = SpeechT5Processor.from_pretrained(checkpoint)
|
24 |
self.vocoder = SpeechT5HifiGan.from_pretrained(vocoder_id)
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
29 |
|
30 |
given_text = data.get("inputs", "")
|
31 |
-
|
32 |
-
|
33 |
-
speaker_embeddings = torch.tensor(self.embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
34 |
-
|
35 |
inputs = self.processor(text=given_text, return_tensors="pt")
|
36 |
|
37 |
-
speech = self.model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=self.vocoder)
|
38 |
|
39 |
|
40 |
|
|
|
22 |
self.model= SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
23 |
self.processor = SpeechT5Processor.from_pretrained(checkpoint)
|
24 |
self.vocoder = SpeechT5HifiGan.from_pretrained(vocoder_id)
|
25 |
+
embeddings_dataset = load_dataset(dataset_id, split="validation")
|
26 |
+
self.embeddings_dataset = embeddings_dataset
|
27 |
+
self.speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
28 |
+
|
29 |
|
30 |
|
31 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
32 |
|
33 |
given_text = data.get("inputs", "")
|
34 |
+
|
|
|
|
|
|
|
35 |
inputs = self.processor(text=given_text, return_tensors="pt")
|
36 |
|
37 |
+
speech = self.model.generate_speech(inputs["input_ids"], self.speaker_embeddings, vocoder=self.vocoder)
|
38 |
|
39 |
|
40 |
|