Update handler.py
Browse files- handler.py +8 -19
handler.py
CHANGED
@@ -1,39 +1,28 @@
|
|
1 |
-
import
|
2 |
-
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
4 |
import soundfile as sf
|
5 |
-
from huggingface_hub.inference_api import InferenceApi
|
6 |
from typing import Dict, List, Any
|
7 |
|
8 |
-
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
-
self.
|
12 |
self.embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
13 |
|
14 |
-
def __call__(self, data):
|
15 |
-
|
16 |
text = data.get("inputs", "")
|
17 |
-
|
18 |
-
speaker_embedding = torch.tensor(self.embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
19 |
-
# Convert embedding to list to avoid serialization issues
|
20 |
-
speaker_embedding_list = speaker_embedding.tolist()
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
#parameters={"forward_params": {"speaker_embeddings": speaker_embedding_list}}
|
25 |
-
response = self.api(inputs=text, options={"wait_for_model": True})
|
26 |
|
27 |
# Write the response audio to a file
|
28 |
-
|
29 |
-
sf.write("speech.wav", response["audio"], samplerate=response["sampling_rate"])
|
30 |
|
31 |
# Return the expected response format
|
32 |
return {
|
33 |
"statusCode": 200,
|
34 |
"body": {
|
35 |
-
"audio": response
|
36 |
-
"sampling_rate": response
|
37 |
}
|
38 |
}
|
39 |
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
|
|
2 |
from datasets import load_dataset
|
3 |
import soundfile as sf
|
|
|
4 |
from typing import Dict, List, Any
|
5 |
|
|
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, path=""):
|
8 |
+
self.client = InferenceClient(repo_id="microsoft/speecht5_tts", task="text-to-speech")
|
9 |
self.embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
10 |
|
11 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
12 |
text = data.get("inputs", "")
|
13 |
+
speaker_embedding = self.embeddings_dataset['xvector'][7306].unsqueeze(0).tolist()
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
response = self.client(payload={"inputs": text, "forward_params": {"speaker_embeddings": speaker_embedding}}, options={"wait_for_model": True})
|
|
|
|
|
16 |
|
17 |
# Write the response audio to a file
|
18 |
+
sf.write("speech.wav", response.audio, response.sampling_rate)
|
|
|
19 |
|
20 |
# Return the expected response format
|
21 |
return {
|
22 |
"statusCode": 200,
|
23 |
"body": {
|
24 |
+
"audio": response.audio, # Consider encoding this to a suitable format
|
25 |
+
"sampling_rate": response.sampling_rate
|
26 |
}
|
27 |
}
|
28 |
|