update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- token-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1312
|
19 |
+
- Erson: {'precision': 0.8860048426150121, 'recall': 0.9401849948612538, 'f1': 0.912291199202194, 'number': 29190}
|
20 |
+
- Ocation: {'precision': 0.8686381704207632, 'recall': 0.8152889539136796, 'f1': 0.841118472477534, 'number': 95690}
|
21 |
+
- Rganization: {'precision': 0.7919078915181266, 'recall': 0.7449641777764141, 'f1': 0.7677190874452579, 'number': 65183}
|
22 |
+
- Roduct: {'precision': 0.7065968977761166, 'recall': 0.8295304958315051, 'f1': 0.7631446160056513, 'number': 9116}
|
23 |
+
- Rt: {'precision': 0.8407258064516129, 'recall': 0.8614333386302241, 'f1': 0.8509536143159878, 'number': 6293}
|
24 |
+
- Ther: {'precision': 0.7303024586555996, 'recall': 0.8314124132006586, 'f1': 0.7775843599357258, 'number': 13969}
|
25 |
+
- Uilding: {'precision': 0.5162234691388143, 'recall': 0.3648904983617865, 'f1': 0.4275611234592847, 'number': 5799}
|
26 |
+
- Vent: {'precision': 0.605920892987139, 'recall': 0.35144264602392683, 'f1': 0.44486014608943525, 'number': 7105}
|
27 |
+
- Overall Precision: 0.8203
|
28 |
+
- Overall Recall: 0.7886
|
29 |
+
- Overall F1: 0.8041
|
30 |
+
- Overall Accuracy: 0.9498
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 8
|
51 |
+
- eval_batch_size: 8
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 4
|
54 |
+
- total_train_batch_size: 32
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 2
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Erson | Ocation | Rganization | Roduct | Rt | Ther | Uilding | Vent | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
62 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
63 |
+
| 0.1796 | 1.0 | 11293 | 0.1427 | {'precision': 0.8740795762821341, 'recall': 0.9272010962658445, 'f1': 0.8998570336137248, 'number': 29190} | {'precision': 0.8576076215009827, 'recall': 0.8071585327620441, 'f1': 0.8316186723086282, 'number': 95690} | {'precision': 0.7699032109387003, 'recall': 0.7688047497046776, 'f1': 0.7693535882339395, 'number': 65183} | {'precision': 0.6710836277974087, 'recall': 0.75, 'f1': 0.7083506009117282, 'number': 9116} | {'precision': 0.834716121685375, 'recall': 0.8153503893214683, 'f1': 0.8249196141479099, 'number': 6293} | {'precision': 0.6742843680056544, 'recall': 0.8195289569761615, 'f1': 0.7398455423789058, 'number': 13969} | {'precision': 0.4812014282713716, 'recall': 0.3950681151922745, 'f1': 0.4339015151515152, 'number': 5799} | {'precision': 0.5997923695821438, 'recall': 0.32526389866291344, 'f1': 0.4217922978645739, 'number': 7105} | 0.8000 | 0.7852 | 0.7925 | 0.9483 |
|
64 |
+
| 0.1542 | 2.0 | 22586 | 0.1312 | {'precision': 0.8860048426150121, 'recall': 0.9401849948612538, 'f1': 0.912291199202194, 'number': 29190} | {'precision': 0.8686381704207632, 'recall': 0.8152889539136796, 'f1': 0.841118472477534, 'number': 95690} | {'precision': 0.7919078915181266, 'recall': 0.7449641777764141, 'f1': 0.7677190874452579, 'number': 65183} | {'precision': 0.7065968977761166, 'recall': 0.8295304958315051, 'f1': 0.7631446160056513, 'number': 9116} | {'precision': 0.8407258064516129, 'recall': 0.8614333386302241, 'f1': 0.8509536143159878, 'number': 6293} | {'precision': 0.7303024586555996, 'recall': 0.8314124132006586, 'f1': 0.7775843599357258, 'number': 13969} | {'precision': 0.5162234691388143, 'recall': 0.3648904983617865, 'f1': 0.4275611234592847, 'number': 5799} | {'precision': 0.605920892987139, 'recall': 0.35144264602392683, 'f1': 0.44486014608943525, 'number': 7105} | 0.8203 | 0.7886 | 0.8041 | 0.9498 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.30.2
|
70 |
+
- Pytorch 2.0.1+cu118
|
71 |
+
- Datasets 2.13.1
|
72 |
+
- Tokenizers 0.13.3
|