DunnBC22 commited on
Commit
f7d2376
·
1 Parent(s): 2014d20

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - token-classification
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
15
+
16
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.1312
19
+ - Erson: {'precision': 0.8860048426150121, 'recall': 0.9401849948612538, 'f1': 0.912291199202194, 'number': 29190}
20
+ - Ocation: {'precision': 0.8686381704207632, 'recall': 0.8152889539136796, 'f1': 0.841118472477534, 'number': 95690}
21
+ - Rganization: {'precision': 0.7919078915181266, 'recall': 0.7449641777764141, 'f1': 0.7677190874452579, 'number': 65183}
22
+ - Roduct: {'precision': 0.7065968977761166, 'recall': 0.8295304958315051, 'f1': 0.7631446160056513, 'number': 9116}
23
+ - Rt: {'precision': 0.8407258064516129, 'recall': 0.8614333386302241, 'f1': 0.8509536143159878, 'number': 6293}
24
+ - Ther: {'precision': 0.7303024586555996, 'recall': 0.8314124132006586, 'f1': 0.7775843599357258, 'number': 13969}
25
+ - Uilding: {'precision': 0.5162234691388143, 'recall': 0.3648904983617865, 'f1': 0.4275611234592847, 'number': 5799}
26
+ - Vent: {'precision': 0.605920892987139, 'recall': 0.35144264602392683, 'f1': 0.44486014608943525, 'number': 7105}
27
+ - Overall Precision: 0.8203
28
+ - Overall Recall: 0.7886
29
+ - Overall F1: 0.8041
30
+ - Overall Accuracy: 0.9498
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 4
54
+ - total_train_batch_size: 32
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 2
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Erson | Ocation | Rganization | Roduct | Rt | Ther | Uilding | Vent | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
62
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
63
+ | 0.1796 | 1.0 | 11293 | 0.1427 | {'precision': 0.8740795762821341, 'recall': 0.9272010962658445, 'f1': 0.8998570336137248, 'number': 29190} | {'precision': 0.8576076215009827, 'recall': 0.8071585327620441, 'f1': 0.8316186723086282, 'number': 95690} | {'precision': 0.7699032109387003, 'recall': 0.7688047497046776, 'f1': 0.7693535882339395, 'number': 65183} | {'precision': 0.6710836277974087, 'recall': 0.75, 'f1': 0.7083506009117282, 'number': 9116} | {'precision': 0.834716121685375, 'recall': 0.8153503893214683, 'f1': 0.8249196141479099, 'number': 6293} | {'precision': 0.6742843680056544, 'recall': 0.8195289569761615, 'f1': 0.7398455423789058, 'number': 13969} | {'precision': 0.4812014282713716, 'recall': 0.3950681151922745, 'f1': 0.4339015151515152, 'number': 5799} | {'precision': 0.5997923695821438, 'recall': 0.32526389866291344, 'f1': 0.4217922978645739, 'number': 7105} | 0.8000 | 0.7852 | 0.7925 | 0.9483 |
64
+ | 0.1542 | 2.0 | 22586 | 0.1312 | {'precision': 0.8860048426150121, 'recall': 0.9401849948612538, 'f1': 0.912291199202194, 'number': 29190} | {'precision': 0.8686381704207632, 'recall': 0.8152889539136796, 'f1': 0.841118472477534, 'number': 95690} | {'precision': 0.7919078915181266, 'recall': 0.7449641777764141, 'f1': 0.7677190874452579, 'number': 65183} | {'precision': 0.7065968977761166, 'recall': 0.8295304958315051, 'f1': 0.7631446160056513, 'number': 9116} | {'precision': 0.8407258064516129, 'recall': 0.8614333386302241, 'f1': 0.8509536143159878, 'number': 6293} | {'precision': 0.7303024586555996, 'recall': 0.8314124132006586, 'f1': 0.7775843599357258, 'number': 13969} | {'precision': 0.5162234691388143, 'recall': 0.3648904983617865, 'f1': 0.4275611234592847, 'number': 5799} | {'precision': 0.605920892987139, 'recall': 0.35144264602392683, 'f1': 0.44486014608943525, 'number': 7105} | 0.8203 | 0.7886 | 0.8041 | 0.9498 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.30.2
70
+ - Pytorch 2.0.1+cu118
71
+ - Datasets 2.13.1
72
+ - Tokenizers 0.13.3