--- license: apache-2.0 tags: - token-classification - generated_from_trainer model-index: - name: bert-base-cased-finetuned-WikiNeural results: [] --- # bert-base-cased-finetuned-WikiNeural This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0881 - Loc: {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} - Misc: {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} - Org: {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} - Per: {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} - Overall Precision: 0.9145 - Overall Recall: 0.9380 - Overall F1: 0.9261 - Overall Accuracy: 0.9912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1 | 1.0 | 5795 | 0.0943 | {'precision': 0.9075480846937126, 'recall': 0.9429051217464316, 'f1': 0.9248888156811068, 'number': 5955} | {'precision': 0.8320190720704199, 'recall': 0.8964631495751828, 'f1': 0.8630397565151225, 'number': 5061} | {'precision': 0.9151428571428571, 'recall': 0.9286749782545666, 'f1': 0.9218592603252267, 'number': 3449} | {'precision': 0.9683036587751908, 'recall': 0.9499040307101727, 'f1': 0.9590155992636372, 'number': 5210} | 0.9039 | 0.9303 | 0.9169 | 0.9901 | | 0.0578 | 2.0 | 11590 | 0.0881 | {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} | {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} | {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} | {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} | 0.9145 | 0.9380 | 0.9261 | 0.9912 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3