--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral-7b-v0.1-english-to-hinglish-translation results: [] --- # mistral-7b-v0.1-english-to-hinglish-translation This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9017 - Rouge Scores: {'rouge1': 0.9052154858930703, 'rouge2': 0.7938118811886605, 'rougeL': 0.8365543601879399, 'rougeLsum': 0.9051011676969527} - Bleu Scores: [0.9286814242037147, 0.9121661008968365, 0.8907823041130339, 0.8677722819236368] - Gen Len: 2048.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge Scores | Bleu Scores | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------:|:-------:| | 0.9667 | 1.0 | 500 | 0.8997 | {'rouge1': 0.9066197962103982, 'rouge2': 0.7949438120742293, 'rougeL': 0.8365583570941119, 'rougeLsum': 0.906542182776239} | [0.9280923249970773, 0.9116476390859075, 0.8901882800412136, 0.8671907395641425] | 2048.0 | | 0.5702 | 2.0 | 1000 | 0.9017 | {'rouge1': 0.9052154858930703, 'rouge2': 0.7938118811886605, 'rougeL': 0.8365543601879399, 'rougeLsum': 0.9051011676969527} | [0.9286814242037147, 0.9121661008968365, 0.8907823041130339, 0.8677722819236368] | 2048.0 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.16.2.dev0 - Tokenizers 0.15.1