Dreamy0 commited on
Commit
363db9d
·
verified ·
1 Parent(s): 14ca087

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -4
README.md CHANGED
@@ -1,12 +1,20 @@
1
  ---
2
  license: mit
 
 
 
 
 
3
  ---
4
  # MaskFormer-Germination
5
  Fine-tuned MaskFormer for germination instance segmentation.
6
 
7
  ## Details
8
  - **Base Model**: `facebook/maskformer-swin-tiny-coco`
9
- - **Classes**: Normal (1), Abnormal (2) (mapped to COCO 134-class IDs)
 
 
 
10
  - **Training Data**: 18 images, 31+ annotations per image
11
  - **Epochs**: 5
12
  - **Final Loss**: 1.655
@@ -21,8 +29,8 @@ from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProce
21
  import torch
22
  from PIL import Image
23
 
24
- processor = MaskFormerImageProcessor.from_pretrained("your-username/maskformer-germination")
25
- model = MaskFormerForInstanceSegmentation.from_pretrained("your-username/maskformer-germination")
26
  model.eval()
27
 
28
  image = Image.open("path/to/image.jpg")
@@ -32,4 +40,4 @@ with torch.no_grad():
32
  results = processor.post_process_instance_segmentation(outputs, target_sizes=[(image.height, image.width)])[0]
33
  for score, label, mask in zip(results["scores"], results["labels"], results["masks"]):
34
  if score > 0.5 and label in [1, 2]:
35
- print(f"Label: {label}, Score: {score:.3f}, Mask shape: {mask.shape}")
 
1
  ---
2
  license: mit
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - instance-segmentation
6
+ - maskformer
7
+ - germination
8
  ---
9
  # MaskFormer-Germination
10
  Fine-tuned MaskFormer for germination instance segmentation.
11
 
12
  ## Details
13
  - **Base Model**: `facebook/maskformer-swin-tiny-coco`
14
+ - **Classes**:
15
+ - `0`: Background
16
+ - `1`: Normal
17
+ - `2`: Abnormal
18
  - **Training Data**: 18 images, 31+ annotations per image
19
  - **Epochs**: 5
20
  - **Final Loss**: 1.655
 
29
  import torch
30
  from PIL import Image
31
 
32
+ processor = MaskFormerImageProcessor.from_pretrained("Dreamy0/GermiNet-instance-segmentation-maskformer")
33
+ model = MaskFormerForInstanceSegmentation.from_pretrained("Dreamy0/GermiNet-instance-segmentation-maskformer")
34
  model.eval()
35
 
36
  image = Image.open("path/to/image.jpg")
 
40
  results = processor.post_process_instance_segmentation(outputs, target_sizes=[(image.height, image.width)])[0]
41
  for score, label, mask in zip(results["scores"], results["labels"], results["masks"]):
42
  if score > 0.5 and label in [1, 2]:
43
+ print(f"Label: {label} ({model.config.id2label[label]}), Score: {score:.3f}, Mask shape: {mask.shape}")