|
import torch |
|
import torchaudio |
|
from einops import rearrange |
|
from stable_audio_tools import get_pretrained_model |
|
from stable_audio_tools.inference.generation import generate_diffusion_cond |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
# Download model |
|
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") |
|
sample_rate = model_config["sample_rate"] |
|
sample_size = model_config["sample_size"] |
|
|
|
model = model.to(device) |
|
|
|
# Set up text and timing conditioning |
|
conditioning = [{ |
|
"prompt": "128 BPM tech house drum loop", |
|
}] |
|
|
|
# Generate stereo audio |
|
output = generate_diffusion_cond( |
|
model, |
|
conditioning=conditioning, |
|
sample_size=sample_size, |
|
device=device |
|
) |
|
|
|
# Rearrange audio batch to a single sequence |
|
output = rearrange(output, "b d n -> d (b n)") |
|
|
|
# Peak normalize, clip, convert to int16, and save to file |
|
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save("output.wav", output, sample_rate) |