|
import glob |
|
import re |
|
import shutil |
|
import sys |
|
|
|
import accelerate |
|
import torch |
|
from configuration_qwen3_shared_moe import Qwen3SharedMoeConfig |
|
from safetensors import safe_open |
|
from transformers.models.qwen3_moe.configuration_qwen3_moe import Qwen3MoeConfig |
|
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeForCausalLM |
|
|
|
input_model = sys.argv[1] |
|
output_model_path = sys.argv[2] |
|
|
|
cfg_shared_moe = Qwen3SharedMoeConfig.from_pretrained(input_model) |
|
cfg_standard_moe = Qwen3MoeConfig( |
|
vocab_size=cfg_shared_moe.vocab_size, |
|
hidden_size=cfg_shared_moe.hidden_size, |
|
intermediate_size=cfg_shared_moe.intermediate_size, |
|
num_hidden_layers=cfg_shared_moe.num_hidden_layers, |
|
num_attention_heads=cfg_shared_moe.num_attention_heads, |
|
num_key_value_heads=cfg_shared_moe.num_key_value_heads, |
|
hidden_act=cfg_shared_moe.hidden_act, |
|
max_position_embeddings=cfg_shared_moe.max_position_embeddings, |
|
initializer_range=cfg_shared_moe.initializer_range, |
|
rms_norm_eps=cfg_shared_moe.rms_norm_eps, |
|
use_cache=cfg_shared_moe.use_cache, |
|
tie_word_embeddings=cfg_shared_moe.tie_word_embeddings, |
|
rope_theta=cfg_shared_moe.rope_theta, |
|
rope_scaling=cfg_shared_moe.rope_scaling, |
|
attention_bias=cfg_shared_moe.attention_bias, |
|
use_sliding_window=cfg_shared_moe.use_sliding_window, |
|
sliding_window=cfg_shared_moe.sliding_window, |
|
max_window_layers=cfg_shared_moe.max_window_layers, |
|
attention_dropout=cfg_shared_moe.attention_dropout, |
|
decoder_sparse_step=cfg_shared_moe.decoder_sparse_step, |
|
moe_intermediate_size=cfg_shared_moe.moe_intermediate_size, |
|
num_experts_per_tok=cfg_shared_moe.num_experts_per_tok, |
|
num_experts=cfg_shared_moe.num_experts, |
|
norm_topk_prob=cfg_shared_moe.norm_topk_prob, |
|
output_router_logits=cfg_shared_moe.output_router_logits, |
|
router_aux_loss_coef=cfg_shared_moe.router_aux_loss_coef, |
|
mlp_only_layers=cfg_shared_moe.mlp_only_layers, |
|
head_dim=cfg_shared_moe.head_dim, |
|
) |
|
num_experts = cfg_standard_moe.num_experts |
|
|
|
with accelerate.init_empty_weights(): |
|
model_standard_moe = Qwen3MoeForCausalLM(cfg_shared_moe) |
|
|
|
model_standard_moe = model_standard_moe.to(torch.bfloat16) |
|
new_state_dict = {} |
|
pattern = f"{input_model}/model-*-of-*.safetensors" |
|
files = sorted(glob.glob(pattern)) |
|
|
|
if len(files) == 0: |
|
raise FileNotFoundError |
|
tensors = {} |
|
|
|
for file_path in files: |
|
print(f"processing {file_path}") |
|
with safe_open(file_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
tensor = f.get_tensor(key) |
|
tensors[key] = tensor |
|
|
|
for key in tensors: |
|
if "moe_mlp" not in key: |
|
new_state_dict[key] = tensors[key] |
|
elif "moe_mlp.output_experts" in key: |
|
layer_num = int(re.search(r"\d+", key).group()) |
|
for i, tensor in enumerate(torch.unbind(tensors[key])): |
|
new_state_dict[ |
|
f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight" |
|
] = tensor.contiguous() |
|
elif "moe_mlp.experts" in key: |
|
layer_num = int(re.search(r"\d+", key).group()) |
|
for i, tensor in enumerate(torch.unbind(tensors[key])): |
|
( |
|
new_state_dict[ |
|
f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight" |
|
], |
|
new_state_dict[ |
|
f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight" |
|
], |
|
) = torch.chunk(tensor, 2, dim=0) |
|
|
|
model_standard_moe.load_state_dict(new_state_dict, strict=True, assign=True) |
|
model_standard_moe.save_pretrained(output_model_path) |
|
cfg_standard_moe.save_pretrained(output_model_path) |
|
|
|
for i in ["merges.txt", "tokenizer_config.json", "tokenizer.json", "vocab.json"]: |
|
shutil.copy(input_model + "/" + i, output_model_path + "/" + i) |
|
|