Doctor-Shotgun commited on
Commit
8e6aa4a
·
verified ·
1 Parent(s): 958b3a0

Training in progress, step 256, checkpoint

Browse files
Files changed (35) hide show
  1. checkpoint-256/README.md +202 -0
  2. checkpoint-256/adapter_config.json +40 -0
  3. checkpoint-256/adapter_model.safetensors +3 -0
  4. checkpoint-256/global_step256/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-256/global_step256/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-256/global_step256/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-256/global_step256/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-256/global_step256/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-256/global_step256/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-256/global_step256/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-256/global_step256/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-256/global_step256/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-256/global_step256/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-256/global_step256/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-256/global_step256/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-256/global_step256/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-256/global_step256/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-256/latest +1 -0
  21. checkpoint-256/rng_state_0.pth +3 -0
  22. checkpoint-256/rng_state_1.pth +3 -0
  23. checkpoint-256/rng_state_2.pth +3 -0
  24. checkpoint-256/rng_state_3.pth +3 -0
  25. checkpoint-256/rng_state_4.pth +3 -0
  26. checkpoint-256/rng_state_5.pth +3 -0
  27. checkpoint-256/rng_state_6.pth +3 -0
  28. checkpoint-256/rng_state_7.pth +3 -0
  29. checkpoint-256/scheduler.pt +3 -0
  30. checkpoint-256/special_tokens_map.json +23 -0
  31. checkpoint-256/tokenizer.json +3 -0
  32. checkpoint-256/tokenizer_config.json +2064 -0
  33. checkpoint-256/trainer_state.json +1825 -0
  34. checkpoint-256/training_args.bin +3 -0
  35. checkpoint-256/zero_to_fp32.py +674 -0
checkpoint-256/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.3-70B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-256/adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "embed_tokens",
22
+ "lm_head"
23
+ ],
24
+ "peft_type": "LORA",
25
+ "r": 128,
26
+ "rank_pattern": {},
27
+ "revision": null,
28
+ "target_modules": [
29
+ "o_proj",
30
+ "down_proj",
31
+ "k_proj",
32
+ "gate_proj",
33
+ "q_proj",
34
+ "up_proj",
35
+ "v_proj"
36
+ ],
37
+ "task_type": "CAUSAL_LM",
38
+ "use_dora": false,
39
+ "use_rslora": true
40
+ }
checkpoint-256/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e004ee92953bf935ae5c9c13a36065f71ad2be5a4904868ecfc27bab2a000b
3
+ size 7516349296
checkpoint-256/global_step256/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12a24962d3409657a94cd0b9dadad540de282f60b95e266e974072a9a019cf73
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7ba1b05accab1da6f15519f791c44169367a2cb1fbe197ae1217e4b4212921
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2d6970d42457a69285539d275413cfd95b6d4a1642dff53d9cbde97e9f36622
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc76d8809b1de0caf5070062cebc954d046f5693c15fc34d3dee22c28173b593
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b4f09017498aa4bd96543ab1de6975aa8173d5ea43531f957a6046138374825
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac220a5dd371c244d7571d4267ea9dfed43d6a7afd4923aa394fa424b55f18de
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a64c9894a43e187836542aab4f71411e96e57a8b11595bce5e2a698238c9f8
3
+ size 3312262110
checkpoint-256/global_step256/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d77215e5133af55be546bf79db20507577443e109ee201d8851ff4b889196ae
3
+ size 3312262110
checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ec3ccdad7109dc2f9267393052c387fd0417dd72e9078846a53703589a55a50
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c94707b624d9cddb1cf28402a3af4549a33d057c822eb647497a3e9aeb261f
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:671cc2a9468789a90038bf4b3aa1f5193421d4eeb83f445458d68592601ef556
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e163394e00c166f56fb2f85edc9ef7856ef23e053972171b4ec741244281e03
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:401c0341e57b21ced32fa55df9342812dc19d312228c8e106b302208193bf688
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fa1a789d9ea13c17464effd66d8d7d94b73ed09033c9f9f649ce326dc19703a
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cd237decc61d3a6478644d1a632abc672e5fa8776b0f431176b792cd71cbd69
3
+ size 1120962
checkpoint-256/global_step256/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b477ac917b438910c9771124a252f643136462beb43722024bed52f8827c67
3
+ size 1120962
checkpoint-256/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step256
checkpoint-256/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce2c33195c7e9d54b535dd2376ed717cb17af71fb3d2b3cf67e6454a53b08b6
3
+ size 15984
checkpoint-256/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d1e102ee08a42dd47dea8feb440562366a0dfb692f3be306382452b122e9f5
3
+ size 15984
checkpoint-256/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:423913ab51049b56c8af20c6db162fc4f1b9e71a490b3d0b6bc4f227f836fab1
3
+ size 15984
checkpoint-256/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10574510ba8b4ea2d7e0d86915fa5c24f3a1876ce7b266601c7fb8fea5f80afa
3
+ size 15984
checkpoint-256/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e1b8bc1744126426ae13ad32094358f63fe60984ce6be19e9fa9e800f23a616
3
+ size 15984
checkpoint-256/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c07b782d5b150ef5584356e5c49a7c7e3c935f0e9e0d9c4ace1f8b8a868f570
3
+ size 15984
checkpoint-256/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dedf58b18bcdf2632bc79c5f8da6506d7aa476d9b9428c566cbd753c0d3e77c9
3
+ size 15984
checkpoint-256/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3ee35e1612a107866f86b57e2ac62d5b1b9b7140ca2f7c8ef5bb286fe84e13
3
+ size 15984
checkpoint-256/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55d47bb6bcb4f183c8e414409a7ebeb364994718b8cef0c9077a8fa8212d7fcc
3
+ size 1064
checkpoint-256/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-256/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-256/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
checkpoint-256/trainer_state.json ADDED
@@ -0,0 +1,1825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5,
5
+ "eval_steps": 500,
6
+ "global_step": 256,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001953125,
13
+ "grad_norm": 2.2842363876082494,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 1.7076,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.00390625,
20
+ "grad_norm": 2.317015212334916,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 1.6296,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.005859375,
27
+ "grad_norm": 2.0835939653262883,
28
+ "learning_rate": 3e-06,
29
+ "loss": 1.5593,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0078125,
34
+ "grad_norm": 2.1357657121975797,
35
+ "learning_rate": 4.000000000000001e-06,
36
+ "loss": 1.6713,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.009765625,
41
+ "grad_norm": 2.0362735997756847,
42
+ "learning_rate": 5e-06,
43
+ "loss": 1.5327,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01171875,
48
+ "grad_norm": 2.1597413317388523,
49
+ "learning_rate": 6e-06,
50
+ "loss": 1.6435,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.013671875,
55
+ "grad_norm": 2.1354234831872616,
56
+ "learning_rate": 7e-06,
57
+ "loss": 1.539,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.015625,
62
+ "grad_norm": 2.0222980997885682,
63
+ "learning_rate": 8.000000000000001e-06,
64
+ "loss": 1.491,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.017578125,
69
+ "grad_norm": 1.8336578914749888,
70
+ "learning_rate": 9e-06,
71
+ "loss": 1.567,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01953125,
76
+ "grad_norm": 1.7535364548043673,
77
+ "learning_rate": 1e-05,
78
+ "loss": 1.5181,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.021484375,
83
+ "grad_norm": 1.348232072077207,
84
+ "learning_rate": 1.1000000000000001e-05,
85
+ "loss": 1.4633,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0234375,
90
+ "grad_norm": 1.079057032053978,
91
+ "learning_rate": 1.2e-05,
92
+ "loss": 1.36,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.025390625,
97
+ "grad_norm": 0.7143765277543237,
98
+ "learning_rate": 1.3000000000000001e-05,
99
+ "loss": 1.3195,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.02734375,
104
+ "grad_norm": 0.8120880164824964,
105
+ "learning_rate": 1.4e-05,
106
+ "loss": 1.3469,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.029296875,
111
+ "grad_norm": 0.6746494578904082,
112
+ "learning_rate": 1.5000000000000002e-05,
113
+ "loss": 1.3626,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.03125,
118
+ "grad_norm": 0.9663545707089416,
119
+ "learning_rate": 1.6000000000000003e-05,
120
+ "loss": 1.2772,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.033203125,
125
+ "grad_norm": 0.961439588523319,
126
+ "learning_rate": 1.7e-05,
127
+ "loss": 1.2911,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.03515625,
132
+ "grad_norm": 1.1738444068957379,
133
+ "learning_rate": 1.8e-05,
134
+ "loss": 1.3346,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.037109375,
139
+ "grad_norm": 1.2332387671295317,
140
+ "learning_rate": 1.9e-05,
141
+ "loss": 1.3761,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0390625,
146
+ "grad_norm": 1.268714744941341,
147
+ "learning_rate": 2e-05,
148
+ "loss": 1.3042,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.041015625,
153
+ "grad_norm": 1.078415802927275,
154
+ "learning_rate": 2.1000000000000002e-05,
155
+ "loss": 1.2102,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.04296875,
160
+ "grad_norm": 1.330999136602917,
161
+ "learning_rate": 2.2000000000000003e-05,
162
+ "loss": 1.2755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.044921875,
167
+ "grad_norm": 0.7130882289363479,
168
+ "learning_rate": 2.3e-05,
169
+ "loss": 1.1706,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.046875,
174
+ "grad_norm": 0.5729960230193528,
175
+ "learning_rate": 2.4e-05,
176
+ "loss": 1.3215,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.048828125,
181
+ "grad_norm": 0.6125271472968751,
182
+ "learning_rate": 2.5e-05,
183
+ "loss": 1.3213,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.05078125,
188
+ "grad_norm": 0.6108864130655043,
189
+ "learning_rate": 2.6000000000000002e-05,
190
+ "loss": 1.2865,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.052734375,
195
+ "grad_norm": 0.6479528408256864,
196
+ "learning_rate": 2.7000000000000002e-05,
197
+ "loss": 1.3383,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0546875,
202
+ "grad_norm": 0.8412108818700305,
203
+ "learning_rate": 2.8e-05,
204
+ "loss": 1.2763,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.056640625,
209
+ "grad_norm": 0.8629612077288169,
210
+ "learning_rate": 2.9e-05,
211
+ "loss": 1.3045,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05859375,
216
+ "grad_norm": 0.7600858737745863,
217
+ "learning_rate": 3.0000000000000004e-05,
218
+ "loss": 1.2352,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.060546875,
223
+ "grad_norm": 0.7130629485255873,
224
+ "learning_rate": 3.1e-05,
225
+ "loss": 1.2299,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.0625,
230
+ "grad_norm": 0.5912964724458128,
231
+ "learning_rate": 3.2000000000000005e-05,
232
+ "loss": 1.2234,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.064453125,
237
+ "grad_norm": 0.5368820032381596,
238
+ "learning_rate": 3.3e-05,
239
+ "loss": 1.1934,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.06640625,
244
+ "grad_norm": 0.5570421986755116,
245
+ "learning_rate": 3.4e-05,
246
+ "loss": 1.2581,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.068359375,
251
+ "grad_norm": 0.46598864760360764,
252
+ "learning_rate": 3.5000000000000004e-05,
253
+ "loss": 1.2535,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.0703125,
258
+ "grad_norm": 0.6392299897042107,
259
+ "learning_rate": 3.6e-05,
260
+ "loss": 1.2331,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.072265625,
265
+ "grad_norm": 0.49983937474417145,
266
+ "learning_rate": 3.7000000000000005e-05,
267
+ "loss": 1.2432,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.07421875,
272
+ "grad_norm": 0.652858138736506,
273
+ "learning_rate": 3.8e-05,
274
+ "loss": 1.2759,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.076171875,
279
+ "grad_norm": 0.5926189930170476,
280
+ "learning_rate": 3.9e-05,
281
+ "loss": 1.3016,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.078125,
286
+ "grad_norm": 0.6646763351870284,
287
+ "learning_rate": 4e-05,
288
+ "loss": 1.344,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.080078125,
293
+ "grad_norm": 0.6228429864196855,
294
+ "learning_rate": 3.99998980683206e-05,
295
+ "loss": 1.2794,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.08203125,
300
+ "grad_norm": 0.5633101870154669,
301
+ "learning_rate": 3.9999592274321385e-05,
302
+ "loss": 1.2931,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.083984375,
307
+ "grad_norm": 0.6866774046182069,
308
+ "learning_rate": 3.999908262111937e-05,
309
+ "loss": 1.2647,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.0859375,
314
+ "grad_norm": 0.5312790576505163,
315
+ "learning_rate": 3.9998369113909555e-05,
316
+ "loss": 1.2255,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.087890625,
321
+ "grad_norm": 0.5694229658922494,
322
+ "learning_rate": 3.999745175996481e-05,
323
+ "loss": 1.3104,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.08984375,
328
+ "grad_norm": 0.5068013674566277,
329
+ "learning_rate": 3.999633056863589e-05,
330
+ "loss": 1.1771,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.091796875,
335
+ "grad_norm": 0.5428027277075501,
336
+ "learning_rate": 3.999500555135129e-05,
337
+ "loss": 1.3508,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.09375,
342
+ "grad_norm": 0.4792441915562371,
343
+ "learning_rate": 3.999347672161713e-05,
344
+ "loss": 1.1144,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.095703125,
349
+ "grad_norm": 0.5033945174929487,
350
+ "learning_rate": 3.999174409501703e-05,
351
+ "loss": 1.1474,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.09765625,
356
+ "grad_norm": 0.5609150975698594,
357
+ "learning_rate": 3.9989807689211946e-05,
358
+ "loss": 1.2558,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.099609375,
363
+ "grad_norm": 0.5558707293914855,
364
+ "learning_rate": 3.998766752393998e-05,
365
+ "loss": 1.1411,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1015625,
370
+ "grad_norm": 0.4429585853749615,
371
+ "learning_rate": 3.99853236210162e-05,
372
+ "loss": 1.1715,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.103515625,
377
+ "grad_norm": 0.5064052852591816,
378
+ "learning_rate": 3.998277600433241e-05,
379
+ "loss": 1.2018,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.10546875,
384
+ "grad_norm": 0.526020419983389,
385
+ "learning_rate": 3.998002469985688e-05,
386
+ "loss": 1.1164,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.107421875,
391
+ "grad_norm": 0.504222879676158,
392
+ "learning_rate": 3.997706973563413e-05,
393
+ "loss": 1.191,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.109375,
398
+ "grad_norm": 0.5614145336635687,
399
+ "learning_rate": 3.9973911141784605e-05,
400
+ "loss": 1.3011,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.111328125,
405
+ "grad_norm": 0.4391770801146478,
406
+ "learning_rate": 3.997054895050437e-05,
407
+ "loss": 1.2535,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.11328125,
412
+ "grad_norm": 0.5583307267784473,
413
+ "learning_rate": 3.996698319606482e-05,
414
+ "loss": 1.153,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.115234375,
419
+ "grad_norm": 0.4576133947689655,
420
+ "learning_rate": 3.996321391481229e-05,
421
+ "loss": 1.1564,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.1171875,
426
+ "grad_norm": 0.41970646962377184,
427
+ "learning_rate": 3.995924114516769e-05,
428
+ "loss": 1.1935,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.119140625,
433
+ "grad_norm": 0.44805324266797203,
434
+ "learning_rate": 3.995506492762613e-05,
435
+ "loss": 1.1339,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.12109375,
440
+ "grad_norm": 0.5208068893189155,
441
+ "learning_rate": 3.9950685304756494e-05,
442
+ "loss": 1.2092,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.123046875,
447
+ "grad_norm": 0.44195618774115664,
448
+ "learning_rate": 3.994610232120101e-05,
449
+ "loss": 1.1292,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.125,
454
+ "grad_norm": 0.4514887790554273,
455
+ "learning_rate": 3.994131602367481e-05,
456
+ "loss": 1.1658,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.126953125,
461
+ "grad_norm": 0.5908686231033371,
462
+ "learning_rate": 3.9936326460965423e-05,
463
+ "loss": 1.2076,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.12890625,
468
+ "grad_norm": 0.46799815417666174,
469
+ "learning_rate": 3.99311336839323e-05,
470
+ "loss": 1.1889,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.130859375,
475
+ "grad_norm": 0.45939729407525115,
476
+ "learning_rate": 3.992573774550629e-05,
477
+ "loss": 1.1704,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.1328125,
482
+ "grad_norm": 0.4142175477343616,
483
+ "learning_rate": 3.9920138700689095e-05,
484
+ "loss": 1.1848,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.134765625,
489
+ "grad_norm": 0.37685838553537837,
490
+ "learning_rate": 3.991433660655273e-05,
491
+ "loss": 1.1041,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.13671875,
496
+ "grad_norm": 0.39832807246827023,
497
+ "learning_rate": 3.99083315222389e-05,
498
+ "loss": 1.2002,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.138671875,
503
+ "grad_norm": 0.43218323629933336,
504
+ "learning_rate": 3.990212350895845e-05,
505
+ "loss": 1.1487,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.140625,
510
+ "grad_norm": 0.43302460007599547,
511
+ "learning_rate": 3.98957126299907e-05,
512
+ "loss": 1.1638,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.142578125,
517
+ "grad_norm": 0.41150363252077565,
518
+ "learning_rate": 3.988909895068281e-05,
519
+ "loss": 1.1353,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.14453125,
524
+ "grad_norm": 0.4362254605938381,
525
+ "learning_rate": 3.988228253844913e-05,
526
+ "loss": 1.2202,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.146484375,
531
+ "grad_norm": 0.4696684841153936,
532
+ "learning_rate": 3.987526346277049e-05,
533
+ "loss": 1.1722,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.1484375,
538
+ "grad_norm": 0.42274900639715757,
539
+ "learning_rate": 3.9868041795193505e-05,
540
+ "loss": 1.179,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.150390625,
545
+ "grad_norm": 0.47381294364503707,
546
+ "learning_rate": 3.9860617609329856e-05,
547
+ "loss": 1.1978,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.15234375,
552
+ "grad_norm": 0.448192967722078,
553
+ "learning_rate": 3.9852990980855505e-05,
554
+ "loss": 1.2042,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.154296875,
559
+ "grad_norm": 0.388483486919693,
560
+ "learning_rate": 3.984516198750997e-05,
561
+ "loss": 1.148,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.15625,
566
+ "grad_norm": 0.4057112657252388,
567
+ "learning_rate": 3.9837130709095475e-05,
568
+ "loss": 1.1267,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.158203125,
573
+ "grad_norm": 0.5111257616377479,
574
+ "learning_rate": 3.982889722747621e-05,
575
+ "loss": 1.1992,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.16015625,
580
+ "grad_norm": 0.42800919524357695,
581
+ "learning_rate": 3.9820461626577426e-05,
582
+ "loss": 1.2214,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.162109375,
587
+ "grad_norm": 0.6604320971658805,
588
+ "learning_rate": 3.981182399238462e-05,
589
+ "loss": 1.1046,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.1640625,
594
+ "grad_norm": 0.4650529995861808,
595
+ "learning_rate": 3.980298441294265e-05,
596
+ "loss": 1.1485,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.166015625,
601
+ "grad_norm": 0.8247014006092652,
602
+ "learning_rate": 3.9793942978354835e-05,
603
+ "loss": 1.2345,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.16796875,
608
+ "grad_norm": 0.5111463246016623,
609
+ "learning_rate": 3.978469978078203e-05,
610
+ "loss": 1.1406,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.169921875,
615
+ "grad_norm": 0.3980549366997817,
616
+ "learning_rate": 3.977525491444171e-05,
617
+ "loss": 1.138,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.171875,
622
+ "grad_norm": 0.4500013345653544,
623
+ "learning_rate": 3.976560847560697e-05,
624
+ "loss": 1.1803,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.173828125,
629
+ "grad_norm": 0.6144879263096161,
630
+ "learning_rate": 3.975576056260559e-05,
631
+ "loss": 1.376,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.17578125,
636
+ "grad_norm": 0.45250166677505255,
637
+ "learning_rate": 3.974571127581901e-05,
638
+ "loss": 1.2616,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.177734375,
643
+ "grad_norm": 0.7260361194779941,
644
+ "learning_rate": 3.973546071768128e-05,
645
+ "loss": 1.207,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.1796875,
650
+ "grad_norm": 0.40590569325939646,
651
+ "learning_rate": 3.972500899267807e-05,
652
+ "loss": 1.1857,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.181640625,
657
+ "grad_norm": 0.7059204956983739,
658
+ "learning_rate": 3.971435620734557e-05,
659
+ "loss": 1.1629,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.18359375,
664
+ "grad_norm": 0.4166494769492577,
665
+ "learning_rate": 3.97035024702694e-05,
666
+ "loss": 1.2105,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.185546875,
671
+ "grad_norm": 0.4708428232528331,
672
+ "learning_rate": 3.969244789208354e-05,
673
+ "loss": 1.2074,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.1875,
678
+ "grad_norm": 0.46187395897944283,
679
+ "learning_rate": 3.9681192585469146e-05,
680
+ "loss": 1.2411,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.189453125,
685
+ "grad_norm": 0.40887786827875044,
686
+ "learning_rate": 3.9669736665153455e-05,
687
+ "loss": 1.181,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.19140625,
692
+ "grad_norm": 0.5783677933870661,
693
+ "learning_rate": 3.96580802479086e-05,
694
+ "loss": 1.2412,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.193359375,
699
+ "grad_norm": 0.46098155681455955,
700
+ "learning_rate": 3.9646223452550374e-05,
701
+ "loss": 1.0478,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.1953125,
706
+ "grad_norm": 0.4421189367731534,
707
+ "learning_rate": 3.9634166399937104e-05,
708
+ "loss": 1.1528,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.197265625,
713
+ "grad_norm": 0.44208897843282735,
714
+ "learning_rate": 3.962190921296834e-05,
715
+ "loss": 1.1294,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.19921875,
720
+ "grad_norm": 0.41115810620405063,
721
+ "learning_rate": 3.9609452016583654e-05,
722
+ "loss": 1.0787,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.201171875,
727
+ "grad_norm": 0.4592703963732682,
728
+ "learning_rate": 3.959679493776134e-05,
729
+ "loss": 1.2084,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.203125,
734
+ "grad_norm": 0.46514364761525706,
735
+ "learning_rate": 3.9583938105517127e-05,
736
+ "loss": 1.169,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.205078125,
741
+ "grad_norm": 0.5044144386089332,
742
+ "learning_rate": 3.957088165090287e-05,
743
+ "loss": 1.121,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.20703125,
748
+ "grad_norm": 0.4160320267546915,
749
+ "learning_rate": 3.9557625707005185e-05,
750
+ "loss": 1.1133,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.208984375,
755
+ "grad_norm": 0.46611013560363507,
756
+ "learning_rate": 3.954417040894416e-05,
757
+ "loss": 1.0846,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.2109375,
762
+ "grad_norm": 0.494489354902747,
763
+ "learning_rate": 3.953051589387189e-05,
764
+ "loss": 1.1762,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.212890625,
769
+ "grad_norm": 0.4226200871032249,
770
+ "learning_rate": 3.951666230097115e-05,
771
+ "loss": 1.0346,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.21484375,
776
+ "grad_norm": 0.4032354878018358,
777
+ "learning_rate": 3.9502609771453934e-05,
778
+ "loss": 1.1223,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.216796875,
783
+ "grad_norm": 0.4148468151686513,
784
+ "learning_rate": 3.948835844856004e-05,
785
+ "loss": 1.1581,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.21875,
790
+ "grad_norm": 0.4655201875464092,
791
+ "learning_rate": 3.947390847755559e-05,
792
+ "loss": 1.141,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.220703125,
797
+ "grad_norm": 0.44131202754652804,
798
+ "learning_rate": 3.945926000573156e-05,
799
+ "loss": 1.228,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.22265625,
804
+ "grad_norm": 0.4878464713519324,
805
+ "learning_rate": 3.94444131824023e-05,
806
+ "loss": 1.2023,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.224609375,
811
+ "grad_norm": 0.4433704308856408,
812
+ "learning_rate": 3.942936815890396e-05,
813
+ "loss": 1.2479,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.2265625,
818
+ "grad_norm": 0.4848454824446459,
819
+ "learning_rate": 3.941412508859299e-05,
820
+ "loss": 1.1269,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.228515625,
825
+ "grad_norm": 0.419630467357436,
826
+ "learning_rate": 3.939868412684458e-05,
827
+ "loss": 1.1806,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.23046875,
832
+ "grad_norm": 0.39683375502836515,
833
+ "learning_rate": 3.938304543105104e-05,
834
+ "loss": 1.1054,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.232421875,
839
+ "grad_norm": 0.4832371787668091,
840
+ "learning_rate": 3.936720916062022e-05,
841
+ "loss": 1.1174,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.234375,
846
+ "grad_norm": 0.5986867637436046,
847
+ "learning_rate": 3.935117547697387e-05,
848
+ "loss": 1.1791,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.236328125,
853
+ "grad_norm": 0.4150490343483682,
854
+ "learning_rate": 3.933494454354605e-05,
855
+ "loss": 1.2129,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.23828125,
860
+ "grad_norm": 0.4215588087170942,
861
+ "learning_rate": 3.931851652578137e-05,
862
+ "loss": 1.1414,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.240234375,
867
+ "grad_norm": 0.42515318009071157,
868
+ "learning_rate": 3.9301891591133377e-05,
869
+ "loss": 1.0854,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.2421875,
874
+ "grad_norm": 0.4488701042494301,
875
+ "learning_rate": 3.928506990906282e-05,
876
+ "loss": 1.0725,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.244140625,
881
+ "grad_norm": 0.41531581194897543,
882
+ "learning_rate": 3.9268051651035944e-05,
883
+ "loss": 1.0746,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.24609375,
888
+ "grad_norm": 0.46204021714125687,
889
+ "learning_rate": 3.9250836990522685e-05,
890
+ "loss": 1.2164,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.248046875,
895
+ "grad_norm": 0.6677384727690392,
896
+ "learning_rate": 3.923342610299499e-05,
897
+ "loss": 1.1834,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.25,
902
+ "grad_norm": 0.4961785465516465,
903
+ "learning_rate": 3.9215819165924956e-05,
904
+ "loss": 1.2178,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.251953125,
909
+ "grad_norm": 0.4651476735438144,
910
+ "learning_rate": 3.919801635878305e-05,
911
+ "loss": 1.1005,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.25390625,
916
+ "grad_norm": 0.49434332973849215,
917
+ "learning_rate": 3.918001786303627e-05,
918
+ "loss": 1.1922,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.255859375,
923
+ "grad_norm": 0.45671514667179935,
924
+ "learning_rate": 3.9161823862146297e-05,
925
+ "loss": 1.0617,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.2578125,
930
+ "grad_norm": 0.49674226929417115,
931
+ "learning_rate": 3.9143434541567654e-05,
932
+ "loss": 1.2203,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.259765625,
937
+ "grad_norm": 0.5208683235687923,
938
+ "learning_rate": 3.912485008874577e-05,
939
+ "loss": 1.1587,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.26171875,
944
+ "grad_norm": 0.517022288962491,
945
+ "learning_rate": 3.9106070693115087e-05,
946
+ "loss": 1.1427,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.263671875,
951
+ "grad_norm": 0.38942661826422087,
952
+ "learning_rate": 3.908709654609715e-05,
953
+ "loss": 1.0629,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.265625,
958
+ "grad_norm": 0.4564236281556844,
959
+ "learning_rate": 3.9067927841098614e-05,
960
+ "loss": 1.0919,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.267578125,
965
+ "grad_norm": 0.4929559987928741,
966
+ "learning_rate": 3.9048564773509314e-05,
967
+ "loss": 1.1502,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.26953125,
972
+ "grad_norm": 0.48513251932309925,
973
+ "learning_rate": 3.902900754070025e-05,
974
+ "loss": 1.1158,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.271484375,
979
+ "grad_norm": 0.5349569441078609,
980
+ "learning_rate": 3.900925634202158e-05,
981
+ "loss": 1.1279,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.2734375,
986
+ "grad_norm": 0.47177459620840684,
987
+ "learning_rate": 3.898931137880059e-05,
988
+ "loss": 1.1595,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.275390625,
993
+ "grad_norm": 0.4904546697998669,
994
+ "learning_rate": 3.896917285433964e-05,
995
+ "loss": 1.2615,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.27734375,
1000
+ "grad_norm": 0.5768180408665089,
1001
+ "learning_rate": 3.894884097391409e-05,
1002
+ "loss": 1.1688,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.279296875,
1007
+ "grad_norm": 0.4362108519904031,
1008
+ "learning_rate": 3.892831594477021e-05,
1009
+ "loss": 1.0983,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.28125,
1014
+ "grad_norm": 0.4570710320413065,
1015
+ "learning_rate": 3.890759797612307e-05,
1016
+ "loss": 1.3706,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.283203125,
1021
+ "grad_norm": 0.4465318663671251,
1022
+ "learning_rate": 3.888668727915441e-05,
1023
+ "loss": 1.1377,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.28515625,
1028
+ "grad_norm": 0.5047852656660148,
1029
+ "learning_rate": 3.886558406701046e-05,
1030
+ "loss": 1.0747,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.287109375,
1035
+ "grad_norm": 0.4412295789497703,
1036
+ "learning_rate": 3.884428855479983e-05,
1037
+ "loss": 1.1261,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.2890625,
1042
+ "grad_norm": 0.4476476539228374,
1043
+ "learning_rate": 3.8822800959591236e-05,
1044
+ "loss": 1.1769,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.291015625,
1049
+ "grad_norm": 0.45924117326794117,
1050
+ "learning_rate": 3.880112150041134e-05,
1051
+ "loss": 1.1564,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.29296875,
1056
+ "grad_norm": 0.43931168833110684,
1057
+ "learning_rate": 3.877925039824253e-05,
1058
+ "loss": 1.1682,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.294921875,
1063
+ "grad_norm": 0.5438637955362605,
1064
+ "learning_rate": 3.8757187876020603e-05,
1065
+ "loss": 1.1448,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.296875,
1070
+ "grad_norm": 0.42928963297461137,
1071
+ "learning_rate": 3.873493415863256e-05,
1072
+ "loss": 1.2078,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.298828125,
1077
+ "grad_norm": 0.4381709802123583,
1078
+ "learning_rate": 3.8712489472914286e-05,
1079
+ "loss": 1.0604,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.30078125,
1084
+ "grad_norm": 0.4988490117613772,
1085
+ "learning_rate": 3.8689854047648224e-05,
1086
+ "loss": 1.1424,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.302734375,
1091
+ "grad_norm": 0.4257038437137218,
1092
+ "learning_rate": 3.866702811356107e-05,
1093
+ "loss": 1.0955,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.3046875,
1098
+ "grad_norm": 0.4893472968930594,
1099
+ "learning_rate": 3.86440119033214e-05,
1100
+ "loss": 1.1854,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.306640625,
1105
+ "grad_norm": 0.5731240348991923,
1106
+ "learning_rate": 3.862080565153731e-05,
1107
+ "loss": 1.2505,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.30859375,
1112
+ "grad_norm": 0.4594995644663965,
1113
+ "learning_rate": 3.8597409594754025e-05,
1114
+ "loss": 1.1047,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.310546875,
1119
+ "grad_norm": 0.3898970756217597,
1120
+ "learning_rate": 3.857382397145148e-05,
1121
+ "loss": 1.1728,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.3125,
1126
+ "grad_norm": 0.5165759238716673,
1127
+ "learning_rate": 3.85500490220419e-05,
1128
+ "loss": 1.1232,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.314453125,
1133
+ "grad_norm": 0.42169317869735606,
1134
+ "learning_rate": 3.852608498886732e-05,
1135
+ "loss": 1.1087,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.31640625,
1140
+ "grad_norm": 0.4831766592421198,
1141
+ "learning_rate": 3.850193211619718e-05,
1142
+ "loss": 1.0902,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.318359375,
1147
+ "grad_norm": 0.5168422003190449,
1148
+ "learning_rate": 3.8477590650225735e-05,
1149
+ "loss": 1.1979,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.3203125,
1154
+ "grad_norm": 0.44267326014624,
1155
+ "learning_rate": 3.845306083906967e-05,
1156
+ "loss": 1.1311,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.322265625,
1161
+ "grad_norm": 0.42634229457641887,
1162
+ "learning_rate": 3.842834293276545e-05,
1163
+ "loss": 1.1729,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.32421875,
1168
+ "grad_norm": 0.40628491116146026,
1169
+ "learning_rate": 3.8403437183266834e-05,
1170
+ "loss": 1.0984,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.326171875,
1175
+ "grad_norm": 0.4159045672550255,
1176
+ "learning_rate": 3.8378343844442344e-05,
1177
+ "loss": 1.1731,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.328125,
1182
+ "grad_norm": 0.5968785135150301,
1183
+ "learning_rate": 3.8353063172072564e-05,
1184
+ "loss": 1.0247,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.330078125,
1189
+ "grad_norm": 0.4649591605790638,
1190
+ "learning_rate": 3.8327595423847645e-05,
1191
+ "loss": 1.139,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.33203125,
1196
+ "grad_norm": 0.48079030109724175,
1197
+ "learning_rate": 3.830194085936463e-05,
1198
+ "loss": 1.1268,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.333984375,
1203
+ "grad_norm": 0.46348618416181137,
1204
+ "learning_rate": 3.8276099740124794e-05,
1205
+ "loss": 1.2004,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.3359375,
1210
+ "grad_norm": 0.4832617358199499,
1211
+ "learning_rate": 3.8250072329531004e-05,
1212
+ "loss": 1.0743,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.337890625,
1217
+ "grad_norm": 0.4420229534375586,
1218
+ "learning_rate": 3.822385889288503e-05,
1219
+ "loss": 1.141,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.33984375,
1224
+ "grad_norm": 0.39752191495545935,
1225
+ "learning_rate": 3.819745969738484e-05,
1226
+ "loss": 1.0972,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.341796875,
1231
+ "grad_norm": 0.4411421700040708,
1232
+ "learning_rate": 3.817087501212185e-05,
1233
+ "loss": 1.0233,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.34375,
1238
+ "grad_norm": 0.4017237336736879,
1239
+ "learning_rate": 3.8144105108078246e-05,
1240
+ "loss": 1.1563,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.345703125,
1245
+ "grad_norm": 0.686922962042273,
1246
+ "learning_rate": 3.8117150258124134e-05,
1247
+ "loss": 1.147,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.34765625,
1252
+ "grad_norm": 0.4294357539370898,
1253
+ "learning_rate": 3.8090010737014836e-05,
1254
+ "loss": 1.1116,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.349609375,
1259
+ "grad_norm": 0.41962832297995667,
1260
+ "learning_rate": 3.806268682138805e-05,
1261
+ "loss": 1.0827,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.3515625,
1266
+ "grad_norm": 0.4413195950046206,
1267
+ "learning_rate": 3.803517878976103e-05,
1268
+ "loss": 1.0814,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.353515625,
1273
+ "grad_norm": 0.45365068157119814,
1274
+ "learning_rate": 3.8007486922527774e-05,
1275
+ "loss": 1.0599,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.35546875,
1280
+ "grad_norm": 0.5286445380979327,
1281
+ "learning_rate": 3.7979611501956124e-05,
1282
+ "loss": 1.2251,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.357421875,
1287
+ "grad_norm": 0.38599209970455534,
1288
+ "learning_rate": 3.795155281218493e-05,
1289
+ "loss": 1.1676,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.359375,
1294
+ "grad_norm": 0.44025531979392435,
1295
+ "learning_rate": 3.7923311139221114e-05,
1296
+ "loss": 1.0514,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.361328125,
1301
+ "grad_norm": 0.42167205583593925,
1302
+ "learning_rate": 3.789488677093681e-05,
1303
+ "loss": 1.1002,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.36328125,
1308
+ "grad_norm": 0.4466402130651366,
1309
+ "learning_rate": 3.786627999706638e-05,
1310
+ "loss": 1.1013,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.365234375,
1315
+ "grad_norm": 0.496760952886551,
1316
+ "learning_rate": 3.783749110920345e-05,
1317
+ "loss": 1.1465,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.3671875,
1322
+ "grad_norm": 0.4367613213432748,
1323
+ "learning_rate": 3.780852040079802e-05,
1324
+ "loss": 1.0657,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.369140625,
1329
+ "grad_norm": 0.41447069424638583,
1330
+ "learning_rate": 3.777936816715336e-05,
1331
+ "loss": 1.116,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.37109375,
1336
+ "grad_norm": 0.4361134375016492,
1337
+ "learning_rate": 3.7750034705423095e-05,
1338
+ "loss": 1.2767,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.373046875,
1343
+ "grad_norm": 0.4066150259484398,
1344
+ "learning_rate": 3.772052031460812e-05,
1345
+ "loss": 1.0785,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.375,
1350
+ "grad_norm": 0.40407841923262816,
1351
+ "learning_rate": 3.769082529555359e-05,
1352
+ "loss": 1.1644,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.376953125,
1357
+ "grad_norm": 0.44561296429853814,
1358
+ "learning_rate": 3.766094995094581e-05,
1359
+ "loss": 1.0663,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.37890625,
1364
+ "grad_norm": 0.5352430776738828,
1365
+ "learning_rate": 3.7630894585309195e-05,
1366
+ "loss": 1.0209,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.380859375,
1371
+ "grad_norm": 0.43636357529723163,
1372
+ "learning_rate": 3.7600659505003125e-05,
1373
+ "loss": 1.0621,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.3828125,
1378
+ "grad_norm": 0.4264879021475797,
1379
+ "learning_rate": 3.757024501821885e-05,
1380
+ "loss": 1.1336,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.384765625,
1385
+ "grad_norm": 0.3873402520476977,
1386
+ "learning_rate": 3.753965143497635e-05,
1387
+ "loss": 1.1378,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.38671875,
1392
+ "grad_norm": 0.40092066811193233,
1393
+ "learning_rate": 3.750887906712115e-05,
1394
+ "loss": 1.0685,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.388671875,
1399
+ "grad_norm": 0.43572366333630774,
1400
+ "learning_rate": 3.747792822832117e-05,
1401
+ "loss": 1.1723,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.390625,
1406
+ "grad_norm": 0.37730662296410905,
1407
+ "learning_rate": 3.744679923406351e-05,
1408
+ "loss": 1.0823,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.392578125,
1413
+ "grad_norm": 0.4578098403628755,
1414
+ "learning_rate": 3.741549240165122e-05,
1415
+ "loss": 1.1354,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.39453125,
1420
+ "grad_norm": 0.4402925550279655,
1421
+ "learning_rate": 3.738400805020011e-05,
1422
+ "loss": 1.0921,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.396484375,
1427
+ "grad_norm": 0.3814506298253285,
1428
+ "learning_rate": 3.7352346500635466e-05,
1429
+ "loss": 1.0813,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.3984375,
1434
+ "grad_norm": 0.5352313284178145,
1435
+ "learning_rate": 3.732050807568878e-05,
1436
+ "loss": 1.2286,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.400390625,
1441
+ "grad_norm": 0.4394941726895711,
1442
+ "learning_rate": 3.728849309989445e-05,
1443
+ "loss": 1.1362,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.40234375,
1448
+ "grad_norm": 0.40009193940161264,
1449
+ "learning_rate": 3.7256301899586524e-05,
1450
+ "loss": 1.014,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.404296875,
1455
+ "grad_norm": 0.4093033957375515,
1456
+ "learning_rate": 3.7223934802895294e-05,
1457
+ "loss": 1.0731,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.40625,
1462
+ "grad_norm": 0.47801078784248796,
1463
+ "learning_rate": 3.719139213974403e-05,
1464
+ "loss": 1.2081,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.408203125,
1469
+ "grad_norm": 0.5965083454407833,
1470
+ "learning_rate": 3.715867424184554e-05,
1471
+ "loss": 1.1495,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.41015625,
1476
+ "grad_norm": 0.43672026913516004,
1477
+ "learning_rate": 3.712578144269887e-05,
1478
+ "loss": 1.1201,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.412109375,
1483
+ "grad_norm": 0.5253144641112631,
1484
+ "learning_rate": 3.7092714077585836e-05,
1485
+ "loss": 1.2268,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.4140625,
1490
+ "grad_norm": 0.4738073414405108,
1491
+ "learning_rate": 3.705947248356765e-05,
1492
+ "loss": 1.1188,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.416015625,
1497
+ "grad_norm": 0.4477140058126639,
1498
+ "learning_rate": 3.7026056999481464e-05,
1499
+ "loss": 1.0571,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.41796875,
1504
+ "grad_norm": 0.4471574730565842,
1505
+ "learning_rate": 3.699246796593692e-05,
1506
+ "loss": 1.0847,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.419921875,
1511
+ "grad_norm": 0.41405988952981876,
1512
+ "learning_rate": 3.6958705725312655e-05,
1513
+ "loss": 1.1401,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.421875,
1518
+ "grad_norm": 0.49370245896699827,
1519
+ "learning_rate": 3.692477062175289e-05,
1520
+ "loss": 1.0703,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.423828125,
1525
+ "grad_norm": 0.4406399072344879,
1526
+ "learning_rate": 3.689066300116381e-05,
1527
+ "loss": 1.1793,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.42578125,
1532
+ "grad_norm": 0.43483619180179833,
1533
+ "learning_rate": 3.6856383211210134e-05,
1534
+ "loss": 1.1305,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.427734375,
1539
+ "grad_norm": 0.43256055966703133,
1540
+ "learning_rate": 3.682193160131152e-05,
1541
+ "loss": 1.0943,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.4296875,
1546
+ "grad_norm": 0.5598257236379292,
1547
+ "learning_rate": 3.678730852263901e-05,
1548
+ "loss": 1.2309,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.431640625,
1553
+ "grad_norm": 0.39045352547405415,
1554
+ "learning_rate": 3.675251432811144e-05,
1555
+ "loss": 1.0047,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.43359375,
1560
+ "grad_norm": 0.44912102512870905,
1561
+ "learning_rate": 3.671754937239191e-05,
1562
+ "loss": 1.1087,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.435546875,
1567
+ "grad_norm": 0.4174420596478436,
1568
+ "learning_rate": 3.668241401188407e-05,
1569
+ "loss": 1.0313,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.4375,
1574
+ "grad_norm": 0.36458359932139156,
1575
+ "learning_rate": 3.6647108604728546e-05,
1576
+ "loss": 0.9782,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.439453125,
1581
+ "grad_norm": 0.4419635662052487,
1582
+ "learning_rate": 3.661163351079929e-05,
1583
+ "loss": 1.1076,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.44140625,
1588
+ "grad_norm": 0.4537093691655119,
1589
+ "learning_rate": 3.6575989091699895e-05,
1590
+ "loss": 1.1265,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.443359375,
1595
+ "grad_norm": 0.4515222234083662,
1596
+ "learning_rate": 3.65401757107599e-05,
1597
+ "loss": 1.124,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.4453125,
1602
+ "grad_norm": 0.4509933735945529,
1603
+ "learning_rate": 3.650419373303112e-05,
1604
+ "loss": 1.2212,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.447265625,
1609
+ "grad_norm": 0.39315970041656184,
1610
+ "learning_rate": 3.646804352528389e-05,
1611
+ "loss": 1.1003,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.44921875,
1616
+ "grad_norm": 0.583897939706095,
1617
+ "learning_rate": 3.643172545600336e-05,
1618
+ "loss": 1.0984,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.451171875,
1623
+ "grad_norm": 0.5164803615434137,
1624
+ "learning_rate": 3.63952398953857e-05,
1625
+ "loss": 1.0738,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.453125,
1630
+ "grad_norm": 0.4070265753872102,
1631
+ "learning_rate": 3.6358587215334355e-05,
1632
+ "loss": 1.034,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.455078125,
1637
+ "grad_norm": 0.4101472350679783,
1638
+ "learning_rate": 3.632176778945626e-05,
1639
+ "loss": 1.1234,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.45703125,
1644
+ "grad_norm": 0.410956088362877,
1645
+ "learning_rate": 3.628478199305799e-05,
1646
+ "loss": 1.1062,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.458984375,
1651
+ "grad_norm": 0.42181972355385416,
1652
+ "learning_rate": 3.624763020314199e-05,
1653
+ "loss": 1.1848,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.4609375,
1658
+ "grad_norm": 0.4069735981570203,
1659
+ "learning_rate": 3.62103127984027e-05,
1660
+ "loss": 1.1203,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.462890625,
1665
+ "grad_norm": 0.4142934678480609,
1666
+ "learning_rate": 3.617283015922268e-05,
1667
+ "loss": 1.1044,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.46484375,
1672
+ "grad_norm": 0.4697374307040272,
1673
+ "learning_rate": 3.6135182667668764e-05,
1674
+ "loss": 1.1947,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.466796875,
1679
+ "grad_norm": 0.3985058819632944,
1680
+ "learning_rate": 3.6097370707488175e-05,
1681
+ "loss": 1.0906,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.46875,
1686
+ "grad_norm": 0.40215610602620183,
1687
+ "learning_rate": 3.6059394664104554e-05,
1688
+ "loss": 1.1607,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.470703125,
1693
+ "grad_norm": 0.3985665062059567,
1694
+ "learning_rate": 3.60212549246141e-05,
1695
+ "loss": 1.0787,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.47265625,
1700
+ "grad_norm": 0.43711415007382576,
1701
+ "learning_rate": 3.598295187778158e-05,
1702
+ "loss": 1.1554,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.474609375,
1707
+ "grad_norm": 0.4382023321095773,
1708
+ "learning_rate": 3.5944485914036384e-05,
1709
+ "loss": 1.0126,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.4765625,
1714
+ "grad_norm": 0.37488265505774904,
1715
+ "learning_rate": 3.590585742546853e-05,
1716
+ "loss": 1.1054,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.478515625,
1721
+ "grad_norm": 0.40930451172856447,
1722
+ "learning_rate": 3.586706680582471e-05,
1723
+ "loss": 1.0321,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.48046875,
1728
+ "grad_norm": 0.5059310227059168,
1729
+ "learning_rate": 3.5828114450504205e-05,
1730
+ "loss": 1.1239,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.482421875,
1735
+ "grad_norm": 0.45898297435796365,
1736
+ "learning_rate": 3.5789000756554927e-05,
1737
+ "loss": 1.0467,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.484375,
1742
+ "grad_norm": 0.42551550838444063,
1743
+ "learning_rate": 3.5749726122669316e-05,
1744
+ "loss": 1.051,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.486328125,
1749
+ "grad_norm": 0.4451344613451106,
1750
+ "learning_rate": 3.5710290949180325e-05,
1751
+ "loss": 1.1036,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.48828125,
1756
+ "grad_norm": 0.43151805025113255,
1757
+ "learning_rate": 3.5670695638057285e-05,
1758
+ "loss": 1.1906,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.490234375,
1763
+ "grad_norm": 0.492114391902568,
1764
+ "learning_rate": 3.563094059290186e-05,
1765
+ "loss": 1.1629,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.4921875,
1770
+ "grad_norm": 0.4144331093915329,
1771
+ "learning_rate": 3.5591026218943905e-05,
1772
+ "loss": 1.1485,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.494140625,
1777
+ "grad_norm": 0.4201461662795515,
1778
+ "learning_rate": 3.5550952923037337e-05,
1779
+ "loss": 1.1451,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.49609375,
1784
+ "grad_norm": 0.41132936789582963,
1785
+ "learning_rate": 3.551072111365598e-05,
1786
+ "loss": 1.1216,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.498046875,
1791
+ "grad_norm": 0.40892606177310264,
1792
+ "learning_rate": 3.547033120088943e-05,
1793
+ "loss": 1.0282,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.5,
1798
+ "grad_norm": 0.39721649148962185,
1799
+ "learning_rate": 3.5429783596438864e-05,
1800
+ "loss": 1.113,
1801
+ "step": 256
1802
+ }
1803
+ ],
1804
+ "logging_steps": 1,
1805
+ "max_steps": 1024,
1806
+ "num_input_tokens_seen": 0,
1807
+ "num_train_epochs": 2,
1808
+ "save_steps": 256,
1809
+ "stateful_callbacks": {
1810
+ "TrainerControl": {
1811
+ "args": {
1812
+ "should_epoch_stop": false,
1813
+ "should_evaluate": false,
1814
+ "should_log": false,
1815
+ "should_save": true,
1816
+ "should_training_stop": false
1817
+ },
1818
+ "attributes": {}
1819
+ }
1820
+ },
1821
+ "total_flos": 531064116215808.0,
1822
+ "train_batch_size": 1,
1823
+ "trial_name": null,
1824
+ "trial_params": null
1825
+ }
checkpoint-256/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcbfa469b9202a5ee04539c5e32b6e52ff3ea81414f858ea729dd1dfc1c96091
3
+ size 8248
checkpoint-256/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)