Upload 3 files
Browse files- inference.py +30 -0
- requirements.txt +3 -0
- time_slot_model.joblib +3 -0
inference.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
|
5 |
+
# Load the trained model
|
6 |
+
model = joblib.load('time_slot_model.joblib')
|
7 |
+
|
8 |
+
# Load the LabelEncoder used in training (if applicable)
|
9 |
+
# label_encoder = joblib.load('label_encoder.joblib') # Uncomment if you used a LabelEncoder
|
10 |
+
|
11 |
+
def preprocess_input(user_pref):
|
12 |
+
# Example preprocessing; adjust based on your actual preprocessing steps
|
13 |
+
user_input = pd.get_dummies(pd.Series([user_pref]), prefix='Pref')
|
14 |
+
return user_input
|
15 |
+
|
16 |
+
def predict(user_pref):
|
17 |
+
# Preprocess the input
|
18 |
+
user_input = preprocess_input(user_pref)
|
19 |
+
|
20 |
+
# Ensure the input has the same columns as the training data
|
21 |
+
user_input = user_input.reindex(columns=model.feature_importances_, fill_value=0)
|
22 |
+
|
23 |
+
# Make a prediction
|
24 |
+
prediction = model.predict(user_input)
|
25 |
+
return prediction[0]
|
26 |
+
|
27 |
+
# Example usage:
|
28 |
+
# user_pref = 'noon' # Replace with actual user preference
|
29 |
+
# prediction = predict(user_pref)
|
30 |
+
# print(f"Predicted next rescheduled time: {prediction}")
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
joblib
|
time_slot_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a54db130c87e319dd2680f789c20d6058064cc3004c061483d4b13b1f4ed61ab
|
3 |
+
size 102729
|