update the model
Browse files- README.md +42 -1
- handler.py +111 -0
- inference.py +1 -1
- pytorch_model.bin → model.pth +0 -0
- model.py +1 -1
- requirements.txt +4 -4
README.md
CHANGED
|
@@ -11,4 +11,45 @@ metrics:
|
|
| 11 |
- accuracy
|
| 12 |
- f1
|
| 13 |
---
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
- accuracy
|
| 12 |
- f1
|
| 13 |
---
|
| 14 |
+
# Fine-tuned BERT Model for Card Mapping in genUI
|
| 15 |
+
|
| 16 |
+
This repository contains a fine-tuned BERT model for card mapping in genUI.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
|
| 20 |
+
- **Language**: English
|
| 21 |
+
- **Framework**: PyTorch
|
| 22 |
+
- **Task**: Text Classification
|
| 23 |
+
- **Model Type**: Custom BERT
|
| 24 |
+
- **Datasets**: Custom
|
| 25 |
+
- **Metrics**: Accuracy, F1 Score
|
| 26 |
+
|
| 27 |
+
## Getting Started
|
| 28 |
+
|
| 29 |
+
### Prerequisites
|
| 30 |
+
|
| 31 |
+
- Python 3.7+
|
| 32 |
+
- PyTorch
|
| 33 |
+
- Transformers library
|
| 34 |
+
|
| 35 |
+
### Installation
|
| 36 |
+
|
| 37 |
+
1. Clone the repository:
|
| 38 |
+
|
| 39 |
+
git clone https://github.com/yourusername/genui-card-mapping.git
|
| 40 |
+
|
| 41 |
+
cd genui-card-mapping
|
| 42 |
+
|
| 43 |
+
2. Install the required packages:
|
| 44 |
+
|
| 45 |
+
pip install -r requirements.txt
|
| 46 |
+
|
| 47 |
+
### Usage
|
| 48 |
+
|
| 49 |
+
1. Run the inference script:
|
| 50 |
+
|
| 51 |
+
python inference.py
|
| 52 |
+
|
| 53 |
+
You may need to modify the inference.py to fit your needs.
|
| 54 |
+
|
| 55 |
+
##ex
|
handler.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import BertTokenizer
|
| 6 |
+
from ts.torch_handler.base_handler import BaseHandler
|
| 7 |
+
from model import ImprovedBERTClass
|
| 8 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 9 |
+
|
| 10 |
+
class UICardMappingHandler(BaseHandler):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.initialized = False
|
| 14 |
+
|
| 15 |
+
def initialize(self, context):
|
| 16 |
+
self.manifest = context.manifest
|
| 17 |
+
properties = context.system_properties
|
| 18 |
+
model_dir = properties.get("model_dir")
|
| 19 |
+
|
| 20 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
|
| 22 |
+
# Load config
|
| 23 |
+
with open(os.path.join(model_dir, 'config.json'), 'r') as f:
|
| 24 |
+
self.config = json.load(f)
|
| 25 |
+
|
| 26 |
+
# Initialize encoder and labels
|
| 27 |
+
self.labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
|
| 28 |
+
labels_np = np.array(self.labels).reshape(-1, 1)
|
| 29 |
+
self.encoder = OneHotEncoder(sparse_output=False)
|
| 30 |
+
self.encoder.fit(labels_np)
|
| 31 |
+
|
| 32 |
+
# Load model
|
| 33 |
+
self.model = ImprovedBERTClass()
|
| 34 |
+
self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device))
|
| 35 |
+
self.model.to(self.device)
|
| 36 |
+
self.model.eval()
|
| 37 |
+
|
| 38 |
+
# Load tokenizer
|
| 39 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 40 |
+
|
| 41 |
+
self.initialized = True
|
| 42 |
+
|
| 43 |
+
def preprocess(self, data):
|
| 44 |
+
text = data[0].get("body").get("text", "")
|
| 45 |
+
k = data[0].get("body").get("k", 3)
|
| 46 |
+
|
| 47 |
+
inputs = self.tokenizer.encode_plus(
|
| 48 |
+
text,
|
| 49 |
+
add_special_tokens=True,
|
| 50 |
+
max_length=64,
|
| 51 |
+
padding='max_length',
|
| 52 |
+
return_tensors='pt',
|
| 53 |
+
truncation=True
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"ids": inputs['input_ids'].to(self.device, dtype=torch.long),
|
| 58 |
+
"mask": inputs['attention_mask'].to(self.device, dtype=torch.long),
|
| 59 |
+
"token_type_ids": inputs['token_type_ids'].to(self.device, dtype=torch.long),
|
| 60 |
+
"k": k
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
def inference(self, data):
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = self.model(data["ids"], data["mask"], data["token_type_ids"])
|
| 66 |
+
probabilities = torch.sigmoid(outputs)
|
| 67 |
+
return probabilities.cpu().detach().numpy().flatten(), data["k"]
|
| 68 |
+
|
| 69 |
+
def postprocess(self, inference_output):
|
| 70 |
+
probabilities, k = inference_output
|
| 71 |
+
|
| 72 |
+
# Get top k predictions
|
| 73 |
+
top_k_indices = np.argsort(probabilities)[-k:][::-1]
|
| 74 |
+
top_k_probs = probabilities[top_k_indices]
|
| 75 |
+
|
| 76 |
+
# Create one-hot encodings for top k indices
|
| 77 |
+
top_k_one_hot = np.zeros((k, len(probabilities)))
|
| 78 |
+
for i, idx in enumerate(top_k_indices):
|
| 79 |
+
top_k_one_hot[i, idx] = 1
|
| 80 |
+
|
| 81 |
+
# Decode the top k predictions
|
| 82 |
+
top_k_cards = [self.decode_vector(one_hot.reshape(1, -1)) for one_hot in top_k_one_hot]
|
| 83 |
+
|
| 84 |
+
# Create a list of tuples (card, probability) for top k predictions
|
| 85 |
+
top_k_predictions = list(zip(top_k_cards, top_k_probs.tolist()))
|
| 86 |
+
|
| 87 |
+
# Determine the most likely card
|
| 88 |
+
predicted_labels = (probabilities > 0.5).astype(int)
|
| 89 |
+
if sum(predicted_labels) == 0:
|
| 90 |
+
most_likely_card = "Answer"
|
| 91 |
+
else:
|
| 92 |
+
most_likely_card = self.decode_vector(predicted_labels.reshape(1, -1))
|
| 93 |
+
|
| 94 |
+
# Prepare the response
|
| 95 |
+
result = {
|
| 96 |
+
"most_likely_card": most_likely_card,
|
| 97 |
+
"top_k_predictions": top_k_predictions
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
return [result]
|
| 101 |
+
|
| 102 |
+
def decode_vector(self, vector):
|
| 103 |
+
original_label = self.encoder.inverse_transform(vector)
|
| 104 |
+
return original_label[0][0] # Returns the label as a string
|
| 105 |
+
|
| 106 |
+
def handle(self, data, context):
|
| 107 |
+
self.context = context
|
| 108 |
+
data = self.preprocess(data)
|
| 109 |
+
data = self.inference(data)
|
| 110 |
+
data = self.postprocess(data)
|
| 111 |
+
return data
|
inference.py
CHANGED
|
@@ -87,7 +87,7 @@ def load_model_and_tokenizer(context):
|
|
| 87 |
|
| 88 |
# Load config and model
|
| 89 |
config_path = os.path.join(model_dir, 'config.json')
|
| 90 |
-
model_path = os.path.join(model_dir, '
|
| 91 |
|
| 92 |
with open(config_path, 'r') as f:
|
| 93 |
config = json.load(f)
|
|
|
|
| 87 |
|
| 88 |
# Load config and model
|
| 89 |
config_path = os.path.join(model_dir, 'config.json')
|
| 90 |
+
model_path = os.path.join(model_dir, 'model.pth')
|
| 91 |
|
| 92 |
with open(config_path, 'r') as f:
|
| 93 |
config = json.load(f)
|
pytorch_model.bin → model.pth
RENAMED
|
File without changes
|
model.py
CHANGED
|
@@ -40,4 +40,4 @@ class ImprovedBERTClass(nn.Module):
|
|
| 40 |
pooled_output = self.dropout(pooled_output)
|
| 41 |
pooled_output = self.norm(pooled_output)
|
| 42 |
logits = self.classifier(pooled_output)
|
| 43 |
-
return logits
|
|
|
|
| 40 |
pooled_output = self.dropout(pooled_output)
|
| 41 |
pooled_output = self.norm(pooled_output)
|
| 42 |
logits = self.classifier(pooled_output)
|
| 43 |
+
return logits
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
numpy
|
| 2 |
-
torch
|
| 3 |
-
transformers
|
| 4 |
-
scikit-learn
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
scikit-learn
|