Diginsa commited on
Commit
72ff060
·
verified ·
1 Parent(s): 2a3a7ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -18,10 +18,10 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # mobilenet_v2_1.0_224-plant-disease-new
20
 
21
- This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.1287
24
- - Accuracy: 0.9600
25
 
26
  ## Model description
27
 
@@ -41,15 +41,15 @@ More information needed
41
 
42
  The following hyperparameters were used during training:
43
  - learning_rate: 5e-05
44
- - train_batch_size: 100
45
- - eval_batch_size: 100
46
  - seed: 42
47
  - gradient_accumulation_steps: 4
48
- - total_train_batch_size: 400
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_ratio: 0.1
52
- - num_epochs: 6
53
 
54
  ### Training results
55
 
@@ -61,6 +61,8 @@ The following hyperparameters were used during training:
61
  | 0.1716 | 4.0 | 1467 | 0.3329 | 0.8960 |
62
  | 0.1602 | 5.0 | 1833 | 0.1999 | 0.9388 |
63
  | 0.1633 | 5.99 | 2196 | 0.1287 | 0.9600 |
 
 
64
 
65
 
66
  ### Framework versions
 
18
 
19
  # mobilenet_v2_1.0_224-plant-disease-new
20
 
21
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on ImageNet dataset dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.1287
24
+ - Accuracy: 0.9812
25
 
26
  ## Model description
27
 
 
41
 
42
  The following hyperparameters were used during training:
43
  - learning_rate: 5e-05
44
+ - train_batch_size: 110
45
+ - eval_batch_size: 110
46
  - seed: 42
47
  - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 500
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 8
53
 
54
  ### Training results
55
 
 
61
  | 0.1716 | 4.0 | 1467 | 0.3329 | 0.8960 |
62
  | 0.1602 | 5.0 | 1833 | 0.1999 | 0.9388 |
63
  | 0.1633 | 5.99 | 2196 | 0.1287 | 0.9600 |
64
+ | 0.1663 | 6.01 | 2410 | 0.1328 | 0.9790 |
65
+ | 0.1824 | 6.79 | 2535 | 0.1637 | 0.9812 |
66
 
67
 
68
  ### Framework versions