--- license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment_model results: [] --- # sentiment_model This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1665 - Accuracy: 0.9720 - F1: 0.9259 - Precision: 0.9615 - Recall: 0.8929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 72 | 0.2060 | 0.9510 | 0.8727 | 0.8889 | 0.8571 | | No log | 2.0 | 144 | 0.2337 | 0.9580 | 0.8846 | 0.9583 | 0.8214 | | No log | 3.0 | 216 | 0.2416 | 0.9441 | 0.8571 | 0.8571 | 0.8571 | | No log | 4.0 | 288 | 0.1905 | 0.9580 | 0.8846 | 0.9583 | 0.8214 | | No log | 5.0 | 360 | 0.2029 | 0.9580 | 0.8929 | 0.8929 | 0.8929 | | No log | 6.0 | 432 | 0.1665 | 0.9720 | 0.9259 | 0.9615 | 0.8929 | | 0.0706 | 7.0 | 504 | 0.1899 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | | 0.0706 | 8.0 | 576 | 0.1990 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | | 0.0706 | 9.0 | 648 | 0.2139 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | | 0.0706 | 10.0 | 720 | 0.2171 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0