--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer datasets: - gbharti/finance-alpaca model-index: - name: Llama-3.2-1B-Finance results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: NousResearch/Llama-3.2-1B # Automatically upload checkpoint and final model to HF hub_model_id: DevAsService/Llama-3.2-1B-Finance datasets: - path: gbharti/finance-alpaca type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/lora-out adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: logging_steps: 1 flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: "<|end_of_text|>" ```

# Llama-3.2-1B-Finance This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the gbharti/finance-alpaca dataset. It achieves the following results on the evaluation set: - Loss: 1.3584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1845 | 0.0009 | 1 | 1.5791 | | 2.1725 | 0.2503 | 289 | 1.3810 | | 2.0163 | 0.5006 | 578 | 1.3673 | | 2.0578 | 0.7510 | 867 | 1.3584 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1