---
library_name: peft
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
datasets:
- gbharti/finance-alpaca
model-index:
- name: Llama-3.2-1B-Finance
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.8.0`
```yaml
base_model: NousResearch/Llama-3.2-1B
# Automatically upload checkpoint and final model to HF
hub_model_id: DevAsService/Llama-3.2-1B-Finance
datasets:
- path: gbharti/finance-alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/lora-out
adapter: lora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
```
# Llama-3.2-1B-Finance
This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the gbharti/finance-alpaca dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1845 | 0.0009 | 1 | 1.5791 |
| 2.1725 | 0.2503 | 289 | 1.3810 |
| 2.0163 | 0.5006 | 578 | 1.3673 |
| 2.0578 | 0.7510 | 867 | 1.3584 |
### Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1