DevAsService commited on
Commit
eee2dd5
·
verified ·
1 Parent(s): 0431c67

End of training

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.2
4
+ base_model: NousResearch/Llama-3.2-1B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - gbharti/finance-alpaca
10
+ model-index:
11
+ - name: Llama-3.2-1B-Finance
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.8.0`
22
+ ```yaml
23
+ base_model: NousResearch/Llama-3.2-1B
24
+ # Automatically upload checkpoint and final model to HF
25
+ hub_model_id: DevAsService/Llama-3.2-1B-Finance
26
+
27
+ datasets:
28
+ - path: gbharti/finance-alpaca
29
+ type: alpaca
30
+ dataset_prepared_path: last_run_prepared
31
+ val_set_size: 0.1
32
+ output_dir: ./outputs/lora-out
33
+
34
+ adapter: lora
35
+ lora_model_dir:
36
+
37
+ sequence_len: 2048
38
+ sample_packing: true
39
+ eval_sample_packing: true
40
+ pad_to_sequence_len: true
41
+
42
+ lora_r: 16
43
+ lora_alpha: 32
44
+ lora_dropout: 0.05
45
+ lora_target_modules:
46
+ - gate_proj
47
+ - down_proj
48
+ - up_proj
49
+ - q_proj
50
+ - v_proj
51
+ - k_proj
52
+ - o_proj
53
+
54
+ wandb_project:
55
+ wandb_entity:
56
+ wandb_watch:
57
+ wandb_name:
58
+ wandb_log_model:
59
+
60
+ gradient_accumulation_steps: 2
61
+ micro_batch_size: 2
62
+ num_epochs: 1
63
+ optimizer: adamw_8bit
64
+ lr_scheduler: cosine
65
+ learning_rate: 0.0002
66
+
67
+ bf16: auto
68
+ tf32: false
69
+
70
+ gradient_checkpointing: true
71
+ resume_from_checkpoint:
72
+ logging_steps: 1
73
+ flash_attention: true
74
+
75
+ loss_watchdog_threshold: 5.0
76
+ loss_watchdog_patience: 3
77
+
78
+ warmup_steps: 10
79
+ evals_per_epoch: 4
80
+ saves_per_epoch: 1
81
+ weight_decay: 0.0
82
+ special_tokens:
83
+ pad_token: "<|end_of_text|>"
84
+
85
+ ```
86
+
87
+ </details><br>
88
+
89
+ # Llama-3.2-1B-Finance
90
+
91
+ This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the gbharti/finance-alpaca dataset.
92
+ It achieves the following results on the evaluation set:
93
+ - Loss: 1.3584
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 0.0002
113
+ - train_batch_size: 2
114
+ - eval_batch_size: 2
115
+ - seed: 42
116
+ - gradient_accumulation_steps: 2
117
+ - total_train_batch_size: 4
118
+ - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
119
+ - lr_scheduler_type: cosine
120
+ - lr_scheduler_warmup_steps: 10
121
+ - num_epochs: 1.0
122
+
123
+ ### Training results
124
+
125
+ | Training Loss | Epoch | Step | Validation Loss |
126
+ |:-------------:|:------:|:----:|:---------------:|
127
+ | 2.1845 | 0.0009 | 1 | 1.5791 |
128
+ | 2.1725 | 0.2503 | 289 | 1.3810 |
129
+ | 2.0163 | 0.5006 | 578 | 1.3673 |
130
+ | 2.0578 | 0.7510 | 867 | 1.3584 |
131
+
132
+
133
+ ### Framework versions
134
+
135
+ - PEFT 0.15.1
136
+ - Transformers 4.51.3
137
+ - Pytorch 2.6.0+cu124
138
+ - Datasets 3.5.0
139
+ - Tokenizers 0.21.1