File size: 5,320 Bytes
a9e0250 027b543 5c30790 027b543 a9e0250 027b543 a9e0250 027b543 a9e0250 027b543 a9e0250 027b543 a9e0250 027b543 a9e0250 027b543 a9e0250 027b543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
tags:
- chat
datasets:
- NewEden/OpenCAI-ShareGPT
- NewEden/vanilla-backrooms-claude-sharegpt
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
- NewEden/RP-logs-V2-Experimental
- NewEden/BlueSky-Experimental-sharegpt
- NewEden/Misc-Mang-Sharegpt
- NewEden/Opus-accepted-hermes-rejected-shuffled
Language:
- En
Pipeline_tag: text-generation
Base_model: Delta-Vector/Francois-PE-12B
Tags:
- Chat
---

A finetune ontop of the orginial Francois-PE model that incorporates KTO to increase coherency and prose. The model aims to have short and sweet prose.
# Quants
GGUF: https://huggingface.co/Delta-Vector/Francois-Huali-12B-gguf
EXL2 : https://huggingface.co/Delta-Vector/Francois-Huali-12B-exl2
## Prompting
Model has been tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## System Prompting
I would highly recommend using either Euryale's system prompt or the EVA system prompt with the model.
<details><summary>See Sao10k's Euryale System Prompt</summary>
```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
<Guidelines>
• Maintain the character persona but allow it to evolve with the story.
• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
• All types of outputs are encouraged; respond accordingly to the narrative.
• Include dialogues, actions, and thoughts in each response.
• Utilize all five senses to describe scenarios within {{char}}'s dialogue.
• Use emotional symbols such as "!" and "~" in appropriate contexts.
• Incorporate onomatopoeia when suitable.
• Allow time for {{user}} to respond with their own input, respecting their agency.
• Act as secondary characters and NPCs as needed, and remove them when appropriate.
• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
</Guidelines>
<Forbidden>
• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
• Repetitive and monotonous outputs.
• Positivity bias in your replies.
• Being overly extreme or NSFW when the narrative context is inappropriate.
</Forbidden>Thanks to Po
Follow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
```
</details><br>
## Axolotl config
<details><summary>See axolotl config</summary>
Axolotl version: ` 0.5.0`
```yaml
base_model: Delta-Vector_Francois-PE-12B
load_in_8bit: false
load_in_4bit: false
strict: false
rl: kto
kto_undesirable_weight: 1.0
#datasets:
# - ds_type: json
# data_files:
# - NewEden/Ohashi-accepted-Hermes-rejected
# split: train
# type: chatml.argilla
datasets:
- path: NewEden/Opus-accepted-hermes-rejected-shuffled
split: train
type: chatml.argilla
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./francois-PE-kto-r1
remove_unused_columns: false
adapter: lora
lora_model_dir:
sequence_len: 8192
pad_to_sequence_len: false
lora_r: 64
lora_alpha: 32
lora_dropout: 0.0
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: KTO-NeMo
wandb_entity:
wandb_watch:
wandb_name: Ohashi-accepted-hermes-rejected-r1
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: constant_with_warmup
learning_rate: 1e-6
max_grad_norm: 0.01
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 25
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.0
fsdp:
fsdp_config:
```
</details><br>
## Credits
Thank you to [Lucy Knada](https://huggingface.co/lucyknada), [Intervitens](https://huggingface.co/intervitens),[Cgato](https://huggingface.co/cgato), [Kubernetes Bad](https://huggingface.co/kubernetes-bad) and the rest of [Anthracite](https://huggingface.co/anthracite-org)
## Training
The training was done for 1 epochs We used 4 x [RTX 3090s](https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/) GPUs graciously provided by [Intervitens](https://huggingface.co/intervitens) for the fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety

|