DeepDream2045 commited on
Commit
c83e8c0
·
verified ·
1 Parent(s): b76b5cf

Training in progress, step 313, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: oopsung/llama2-7b-koNqa-test-v1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "oopsung/llama2-7b-koNqa-test-v1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "gate_proj",
28
+ "o_proj",
29
+ "up_proj",
30
+ "v_proj",
31
+ "q_proj",
32
+ "down_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8950e8e6b65a7778eee9deefe719e424c653ff6b85d4ab6b1abd8ae2c7a76db0
3
+ size 80013120
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3bb533cc5172ec74cea57d9cfc0dd90dbb0e2ece16b81efd576e0019f7814a7
3
+ size 41120084
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da386128740862a204df566b200e7c30ba50a0a9144a2d20f6df953b12fb3eb9
3
+ size 14244
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c161f5ed2e319062bad233b74e107354728f77b6c09ccc2bf6980c6aed84ef5f
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
last-checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "46331": {
31
+ "content": "<|sep|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "46332": {
39
+ "content": "<|endoftext|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "46333": {
47
+ "content": "<|acc|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "46334": {
55
+ "content": "<|rrn|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "46335": {
63
+ "content": "<|tel|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ }
70
+ },
71
+ "bos_token": "<s>",
72
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
73
+ "clean_up_tokenization_spaces": false,
74
+ "eos_token": "</s>",
75
+ "legacy": false,
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "sp_model_kwargs": {},
79
+ "tokenizer_class": "LlamaTokenizer",
80
+ "unk_token": "<unk>",
81
+ "use_default_system_prompt": false
82
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,2232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.2501998401278977,
5
+ "eval_steps": 313,
6
+ "global_step": 313,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0007993605115907274,
13
+ "grad_norm": 0.9769428968429565,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.579,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0015987210231814548,
20
+ "grad_norm": 1.4124329090118408,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.6108,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.002398081534772182,
27
+ "grad_norm": 1.4856560230255127,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.5688,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0031974420463629096,
34
+ "grad_norm": 1.6137977838516235,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.7697,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.003996802557953637,
41
+ "grad_norm": 3.157710313796997,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.7262,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.004796163069544364,
48
+ "grad_norm": 1.7610689401626587,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.7832,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.005595523581135092,
55
+ "grad_norm": 0.8947455883026123,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.5354,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.006394884092725819,
62
+ "grad_norm": 1.3658140897750854,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.4666,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.007194244604316547,
69
+ "grad_norm": 1.177503228187561,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.5789,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.007993605115907274,
76
+ "grad_norm": 0.6313580870628357,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.4239,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.008792965627498001,
83
+ "grad_norm": 0.5577117204666138,
84
+ "learning_rate": 0.0001999996795753233,
85
+ "loss": 1.3836,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.009592326139088728,
90
+ "grad_norm": 0.3578161299228668,
91
+ "learning_rate": 0.00019999871830334666,
92
+ "loss": 1.4216,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.010391686650679457,
97
+ "grad_norm": 0.3458471894264221,
98
+ "learning_rate": 0.00019999711619023033,
99
+ "loss": 1.3738,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.011191047162270184,
104
+ "grad_norm": 0.3871558904647827,
105
+ "learning_rate": 0.0001999948732462415,
106
+ "loss": 1.6331,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.011990407673860911,
111
+ "grad_norm": 0.42943254113197327,
112
+ "learning_rate": 0.00019999198948575405,
113
+ "loss": 1.4731,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.012789768185451638,
118
+ "grad_norm": 0.5344604849815369,
119
+ "learning_rate": 0.00019998846492724848,
120
+ "loss": 1.4287,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.013589128697042365,
125
+ "grad_norm": 0.3863997161388397,
126
+ "learning_rate": 0.00019998429959331202,
127
+ "loss": 1.4383,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.014388489208633094,
132
+ "grad_norm": 0.3050038516521454,
133
+ "learning_rate": 0.00019997949351063807,
134
+ "loss": 1.397,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.015187849720223821,
139
+ "grad_norm": 0.505196213722229,
140
+ "learning_rate": 0.00019997404671002645,
141
+ "loss": 1.264,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.01598721023181455,
146
+ "grad_norm": 0.32306888699531555,
147
+ "learning_rate": 0.00019996795922638293,
148
+ "loss": 1.2446,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.016786570743405275,
153
+ "grad_norm": 0.2961249053478241,
154
+ "learning_rate": 0.00019996123109871906,
155
+ "loss": 1.2698,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.017585931254996003,
160
+ "grad_norm": 0.3262718617916107,
161
+ "learning_rate": 0.00019995386237015207,
162
+ "loss": 1.3138,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.01838529176658673,
167
+ "grad_norm": 0.32393717765808105,
168
+ "learning_rate": 0.00019994585308790437,
169
+ "loss": 1.4055,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.019184652278177457,
174
+ "grad_norm": 0.38771146535873413,
175
+ "learning_rate": 0.00019993720330330344,
176
+ "loss": 1.1768,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.019984012789768184,
181
+ "grad_norm": 0.7120429873466492,
182
+ "learning_rate": 0.00019992791307178132,
183
+ "loss": 1.4573,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.020783373301358914,
188
+ "grad_norm": 0.45761018991470337,
189
+ "learning_rate": 0.00019991798245287437,
190
+ "loss": 1.1941,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.02158273381294964,
195
+ "grad_norm": 0.561205267906189,
196
+ "learning_rate": 0.00019990741151022301,
197
+ "loss": 1.2419,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.02238209432454037,
202
+ "grad_norm": 0.49985525012016296,
203
+ "learning_rate": 0.00019989620031157096,
204
+ "loss": 1.2706,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.023181454836131096,
209
+ "grad_norm": 0.48108696937561035,
210
+ "learning_rate": 0.00019988434892876514,
211
+ "loss": 1.2447,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.023980815347721823,
216
+ "grad_norm": 0.4763461649417877,
217
+ "learning_rate": 0.00019987185743775506,
218
+ "loss": 1.3387,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.02478017585931255,
223
+ "grad_norm": 0.5324568152427673,
224
+ "learning_rate": 0.0001998587259185924,
225
+ "loss": 1.237,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.025579536370903277,
230
+ "grad_norm": 0.5018892884254456,
231
+ "learning_rate": 0.00019984495445543035,
232
+ "loss": 1.1439,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.026378896882494004,
237
+ "grad_norm": 0.6650824546813965,
238
+ "learning_rate": 0.00019983054313652327,
239
+ "loss": 1.3662,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.02717825739408473,
244
+ "grad_norm": 0.5708889365196228,
245
+ "learning_rate": 0.000199815492054226,
246
+ "loss": 1.257,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.027977617905675458,
251
+ "grad_norm": 0.5752307772636414,
252
+ "learning_rate": 0.00019979980130499332,
253
+ "loss": 1.2674,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.02877697841726619,
258
+ "grad_norm": 0.6828409433364868,
259
+ "learning_rate": 0.0001997834709893793,
260
+ "loss": 1.2649,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.029576338928856916,
265
+ "grad_norm": 0.7169652581214905,
266
+ "learning_rate": 0.00019976650121203662,
267
+ "loss": 1.3819,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.030375699440447643,
272
+ "grad_norm": 0.818884551525116,
273
+ "learning_rate": 0.000199748892081716,
274
+ "loss": 1.1481,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.03117505995203837,
279
+ "grad_norm": 0.7318893074989319,
280
+ "learning_rate": 0.00019973064371126548,
281
+ "loss": 1.3767,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.0319744204636291,
286
+ "grad_norm": 0.8119074106216431,
287
+ "learning_rate": 0.0001997117562176296,
288
+ "loss": 1.2443,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.032773780975219824,
293
+ "grad_norm": 0.8081012964248657,
294
+ "learning_rate": 0.00019969222972184873,
295
+ "loss": 1.3334,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.03357314148681055,
300
+ "grad_norm": 1.2921013832092285,
301
+ "learning_rate": 0.0001996720643490583,
302
+ "loss": 1.3498,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.03437250199840128,
307
+ "grad_norm": 0.8731054067611694,
308
+ "learning_rate": 0.00019965126022848795,
309
+ "loss": 1.3554,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.035171862509992005,
314
+ "grad_norm": 1.6653393507003784,
315
+ "learning_rate": 0.00019962981749346078,
316
+ "loss": 1.2505,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.03597122302158273,
321
+ "grad_norm": 1.1841192245483398,
322
+ "learning_rate": 0.0001996077362813924,
323
+ "loss": 1.4331,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.03677058353317346,
328
+ "grad_norm": 1.1024802923202515,
329
+ "learning_rate": 0.00019958501673379017,
330
+ "loss": 1.3417,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.037569944044764186,
335
+ "grad_norm": 1.1995766162872314,
336
+ "learning_rate": 0.0001995616589962521,
337
+ "loss": 1.3926,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.03836930455635491,
342
+ "grad_norm": 1.225229024887085,
343
+ "learning_rate": 0.0001995376632184661,
344
+ "loss": 1.4751,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.03916866506794564,
349
+ "grad_norm": 1.2696462869644165,
350
+ "learning_rate": 0.000199513029554209,
351
+ "loss": 1.5408,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.03996802557953637,
356
+ "grad_norm": 1.928471326828003,
357
+ "learning_rate": 0.00019948775816134545,
358
+ "loss": 1.5136,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.0407673860911271,
363
+ "grad_norm": 0.4314931333065033,
364
+ "learning_rate": 0.00019946184920182703,
365
+ "loss": 0.9989,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.04156674660271783,
370
+ "grad_norm": 0.42213746905326843,
371
+ "learning_rate": 0.00019943530284169107,
372
+ "loss": 1.1271,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.042366107114308556,
377
+ "grad_norm": 0.4374404549598694,
378
+ "learning_rate": 0.00019940811925105983,
379
+ "loss": 1.2358,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.04316546762589928,
384
+ "grad_norm": 0.4488702714443207,
385
+ "learning_rate": 0.00019938029860413914,
386
+ "loss": 1.2932,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.04396482813749001,
391
+ "grad_norm": 0.4582211375236511,
392
+ "learning_rate": 0.00019935184107921746,
393
+ "loss": 1.3682,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.04476418864908074,
398
+ "grad_norm": 0.3806026577949524,
399
+ "learning_rate": 0.0001993227468586646,
400
+ "loss": 1.1767,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.045563549160671464,
405
+ "grad_norm": 0.32610875368118286,
406
+ "learning_rate": 0.00019929301612893076,
407
+ "loss": 1.3175,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.04636290967226219,
412
+ "grad_norm": 0.36089614033699036,
413
+ "learning_rate": 0.00019926264908054505,
414
+ "loss": 1.2795,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.04716227018385292,
419
+ "grad_norm": 0.29600343108177185,
420
+ "learning_rate": 0.00019923164590811453,
421
+ "loss": 1.2695,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.047961630695443645,
426
+ "grad_norm": 0.32665324211120605,
427
+ "learning_rate": 0.00019920000681032288,
428
+ "loss": 1.2684,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.04876099120703437,
433
+ "grad_norm": 0.3206937611103058,
434
+ "learning_rate": 0.000199167731989929,
435
+ "loss": 1.3253,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.0495603517186251,
440
+ "grad_norm": 0.341336190700531,
441
+ "learning_rate": 0.0001991348216537659,
442
+ "loss": 1.3535,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.050359712230215826,
447
+ "grad_norm": 0.3452065885066986,
448
+ "learning_rate": 0.00019910127601273922,
449
+ "loss": 1.2304,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.051159072741806554,
454
+ "grad_norm": 0.3307613432407379,
455
+ "learning_rate": 0.000199067095281826,
456
+ "loss": 1.33,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.05195843325339728,
461
+ "grad_norm": 0.45325058698654175,
462
+ "learning_rate": 0.00019903227968007326,
463
+ "loss": 1.1714,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.05275779376498801,
468
+ "grad_norm": 0.31866246461868286,
469
+ "learning_rate": 0.0001989968294305965,
470
+ "loss": 1.1689,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.053557154276578735,
475
+ "grad_norm": 0.3664025068283081,
476
+ "learning_rate": 0.00019896074476057846,
477
+ "loss": 1.1676,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.05435651478816946,
482
+ "grad_norm": 0.3401780128479004,
483
+ "learning_rate": 0.0001989240259012675,
484
+ "loss": 1.1686,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.05515587529976019,
489
+ "grad_norm": 0.3274155855178833,
490
+ "learning_rate": 0.0001988866730879762,
491
+ "loss": 1.2787,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.055955235811350916,
496
+ "grad_norm": 0.40872663259506226,
497
+ "learning_rate": 0.00019884868656007982,
498
+ "loss": 1.1387,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.05675459632294165,
503
+ "grad_norm": 0.4075217843055725,
504
+ "learning_rate": 0.00019881006656101479,
505
+ "loss": 1.3203,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.05755395683453238,
510
+ "grad_norm": 0.39391955733299255,
511
+ "learning_rate": 0.00019877081333827712,
512
+ "loss": 1.2622,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.058353317346123104,
517
+ "grad_norm": 0.3511233627796173,
518
+ "learning_rate": 0.00019873092714342078,
519
+ "loss": 1.1735,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.05915267785771383,
524
+ "grad_norm": 0.3602863550186157,
525
+ "learning_rate": 0.0001986904082320563,
526
+ "loss": 1.2766,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.05995203836930456,
531
+ "grad_norm": 0.387012243270874,
532
+ "learning_rate": 0.00019864925686384873,
533
+ "loss": 1.1864,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.060751398880895285,
538
+ "grad_norm": 0.40913423895835876,
539
+ "learning_rate": 0.00019860747330251646,
540
+ "loss": 1.1349,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.06155075939248601,
545
+ "grad_norm": 0.4468153715133667,
546
+ "learning_rate": 0.0001985650578158291,
547
+ "loss": 1.1298,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.06235011990407674,
552
+ "grad_norm": 0.39224302768707275,
553
+ "learning_rate": 0.00019852201067560606,
554
+ "loss": 1.2709,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.06314948041566747,
559
+ "grad_norm": 0.5494399070739746,
560
+ "learning_rate": 0.00019847833215771467,
561
+ "loss": 1.2546,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.0639488409272582,
566
+ "grad_norm": 0.41739019751548767,
567
+ "learning_rate": 0.0001984340225420684,
568
+ "loss": 0.9764,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.06474820143884892,
573
+ "grad_norm": 0.5113200545310974,
574
+ "learning_rate": 0.00019838908211262512,
575
+ "loss": 1.1387,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.06554756195043965,
580
+ "grad_norm": 0.5975989103317261,
581
+ "learning_rate": 0.00019834351115738535,
582
+ "loss": 1.1277,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.06634692246203037,
587
+ "grad_norm": 0.637183666229248,
588
+ "learning_rate": 0.0001982973099683902,
589
+ "loss": 1.2837,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.0671462829736211,
594
+ "grad_norm": 0.6082845330238342,
595
+ "learning_rate": 0.0001982504788417197,
596
+ "loss": 1.1614,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.06794564348521183,
601
+ "grad_norm": 0.6118457317352295,
602
+ "learning_rate": 0.00019820301807749085,
603
+ "loss": 1.0804,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.06874500399680256,
608
+ "grad_norm": 0.6204389333724976,
609
+ "learning_rate": 0.0001981549279798556,
610
+ "loss": 1.1872,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.06954436450839328,
615
+ "grad_norm": 0.7375397086143494,
616
+ "learning_rate": 0.00019810620885699905,
617
+ "loss": 1.1549,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.07034372501998401,
622
+ "grad_norm": 0.7445656657218933,
623
+ "learning_rate": 0.00019805686102113747,
624
+ "loss": 1.2021,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.07114308553157474,
629
+ "grad_norm": 0.7308616042137146,
630
+ "learning_rate": 0.000198006884788516,
631
+ "loss": 1.19,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.07194244604316546,
636
+ "grad_norm": 0.7465918660163879,
637
+ "learning_rate": 0.00019795628047940714,
638
+ "loss": 1.206,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.07274180655475619,
643
+ "grad_norm": 0.7157571911811829,
644
+ "learning_rate": 0.00019790504841810818,
645
+ "loss": 1.2446,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.07354116706634692,
650
+ "grad_norm": 0.7882369756698608,
651
+ "learning_rate": 0.0001978531889329395,
652
+ "loss": 1.1773,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.07434052757793765,
657
+ "grad_norm": 0.8234530091285706,
658
+ "learning_rate": 0.00019780070235624221,
659
+ "loss": 1.3671,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.07513988808952837,
664
+ "grad_norm": 0.8139231204986572,
665
+ "learning_rate": 0.00019774758902437633,
666
+ "loss": 1.0876,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.0759392486011191,
671
+ "grad_norm": 0.8524796366691589,
672
+ "learning_rate": 0.0001976938492777182,
673
+ "loss": 1.3702,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.07673860911270983,
678
+ "grad_norm": 1.0552854537963867,
679
+ "learning_rate": 0.00019763948346065863,
680
+ "loss": 1.3548,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.07753796962430055,
685
+ "grad_norm": 1.154104471206665,
686
+ "learning_rate": 0.00019758449192160067,
687
+ "loss": 1.3052,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.07833733013589128,
692
+ "grad_norm": 1.4590299129486084,
693
+ "learning_rate": 0.0001975288750129572,
694
+ "loss": 1.5012,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.07913669064748201,
699
+ "grad_norm": 1.1523703336715698,
700
+ "learning_rate": 0.00019747263309114886,
701
+ "loss": 1.2774,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.07993605115907274,
706
+ "grad_norm": 1.8166016340255737,
707
+ "learning_rate": 0.00019741576651660157,
708
+ "loss": 1.5335,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.08073541167066348,
713
+ "grad_norm": 0.33014848828315735,
714
+ "learning_rate": 0.00019735827565374448,
715
+ "loss": 0.8385,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.0815347721822542,
720
+ "grad_norm": 0.47714775800704956,
721
+ "learning_rate": 0.00019730016087100738,
722
+ "loss": 1.0898,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.08233413269384493,
727
+ "grad_norm": 0.38810276985168457,
728
+ "learning_rate": 0.0001972414225408185,
729
+ "loss": 1.2567,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.08313349320543566,
734
+ "grad_norm": 0.3891359567642212,
735
+ "learning_rate": 0.00019718206103960199,
736
+ "loss": 1.3001,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.08393285371702638,
741
+ "grad_norm": 0.34673169255256653,
742
+ "learning_rate": 0.0001971220767477757,
743
+ "loss": 0.9833,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.08473221422861711,
748
+ "grad_norm": 0.3248400092124939,
749
+ "learning_rate": 0.00019706147004974858,
750
+ "loss": 1.0155,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.08553157474020784,
755
+ "grad_norm": 0.35666921734809875,
756
+ "learning_rate": 0.00019700024133391825,
757
+ "loss": 1.2418,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.08633093525179857,
762
+ "grad_norm": 0.3231503367424011,
763
+ "learning_rate": 0.00019693839099266854,
764
+ "loss": 1.3613,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.08713029576338929,
769
+ "grad_norm": 0.39568766951560974,
770
+ "learning_rate": 0.00019687591942236694,
771
+ "loss": 1.2904,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.08792965627498002,
776
+ "grad_norm": 0.3730657994747162,
777
+ "learning_rate": 0.00019681282702336213,
778
+ "loss": 1.1627,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.08872901678657075,
783
+ "grad_norm": 0.325320839881897,
784
+ "learning_rate": 0.0001967491141999813,
785
+ "loss": 1.2207,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.08952837729816147,
790
+ "grad_norm": 0.34427809715270996,
791
+ "learning_rate": 0.00019668478136052774,
792
+ "loss": 1.1845,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.0903277378097522,
797
+ "grad_norm": 0.35617393255233765,
798
+ "learning_rate": 0.000196619828917278,
799
+ "loss": 1.2409,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.09112709832134293,
804
+ "grad_norm": 0.27655553817749023,
805
+ "learning_rate": 0.0001965542572864794,
806
+ "loss": 1.2033,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.09192645883293366,
811
+ "grad_norm": 0.3395769000053406,
812
+ "learning_rate": 0.00019648806688834727,
813
+ "loss": 1.3018,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.09272581934452438,
818
+ "grad_norm": 0.3312259018421173,
819
+ "learning_rate": 0.0001964212581470624,
820
+ "loss": 1.1357,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.09352517985611511,
825
+ "grad_norm": 0.3719313144683838,
826
+ "learning_rate": 0.00019635383149076816,
827
+ "loss": 1.169,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.09432454036770584,
832
+ "grad_norm": 0.4446873962879181,
833
+ "learning_rate": 0.00019628578735156782,
834
+ "loss": 1.1771,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.09512390087929656,
839
+ "grad_norm": 0.3680599331855774,
840
+ "learning_rate": 0.00019621712616552182,
841
+ "loss": 1.1348,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.09592326139088729,
846
+ "grad_norm": 0.4281708598136902,
847
+ "learning_rate": 0.00019614784837264493,
848
+ "loss": 1.281,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.09672262190247802,
853
+ "grad_norm": 0.47409558296203613,
854
+ "learning_rate": 0.00019607795441690343,
855
+ "loss": 1.1092,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.09752198241406874,
860
+ "grad_norm": 0.42403674125671387,
861
+ "learning_rate": 0.00019600744474621232,
862
+ "loss": 1.2435,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.09832134292565947,
867
+ "grad_norm": 0.3994583487510681,
868
+ "learning_rate": 0.0001959363198124323,
869
+ "loss": 0.9298,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.0991207034372502,
874
+ "grad_norm": 0.40915215015411377,
875
+ "learning_rate": 0.00019586458007136713,
876
+ "loss": 1.0747,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.09992006394884093,
881
+ "grad_norm": 0.48302751779556274,
882
+ "learning_rate": 0.00019579222598276042,
883
+ "loss": 1.0207,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.10071942446043165,
888
+ "grad_norm": 0.4173729121685028,
889
+ "learning_rate": 0.0001957192580102929,
890
+ "loss": 1.0703,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.10151878497202238,
895
+ "grad_norm": 0.4759293496608734,
896
+ "learning_rate": 0.0001956456766215793,
897
+ "loss": 1.1198,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.10231814548361311,
902
+ "grad_norm": 0.482934832572937,
903
+ "learning_rate": 0.00019557148228816558,
904
+ "loss": 1.0601,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.10311750599520383,
909
+ "grad_norm": 0.5856558084487915,
910
+ "learning_rate": 0.00019549667548552556,
911
+ "loss": 1.0727,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.10391686650679456,
916
+ "grad_norm": 0.7809787392616272,
917
+ "learning_rate": 0.00019542125669305812,
918
+ "loss": 1.3431,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.10471622701838529,
923
+ "grad_norm": 0.5539796948432922,
924
+ "learning_rate": 0.0001953452263940842,
925
+ "loss": 1.1235,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.10551558752997602,
930
+ "grad_norm": 0.6920113563537598,
931
+ "learning_rate": 0.00019526858507584347,
932
+ "loss": 1.3767,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.10631494804156674,
937
+ "grad_norm": 0.5963138937950134,
938
+ "learning_rate": 0.00019519133322949122,
939
+ "loss": 1.1087,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.10711430855315747,
944
+ "grad_norm": 0.5328074097633362,
945
+ "learning_rate": 0.00019511347135009555,
946
+ "loss": 1.1354,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.1079136690647482,
951
+ "grad_norm": 0.6872808337211609,
952
+ "learning_rate": 0.0001950349999366337,
953
+ "loss": 1.254,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.10871302957633892,
958
+ "grad_norm": 0.6161524653434753,
959
+ "learning_rate": 0.00019495591949198927,
960
+ "loss": 1.1668,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.10951239008792965,
965
+ "grad_norm": 0.6678225994110107,
966
+ "learning_rate": 0.00019487623052294873,
967
+ "loss": 1.2988,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.11031175059952038,
972
+ "grad_norm": 0.8969778418540955,
973
+ "learning_rate": 0.0001947959335401984,
974
+ "loss": 1.2204,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.1111111111111111,
979
+ "grad_norm": 0.7081554532051086,
980
+ "learning_rate": 0.0001947150290583209,
981
+ "loss": 1.3007,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.11191047162270183,
986
+ "grad_norm": 0.7982020974159241,
987
+ "learning_rate": 0.00019463351759579212,
988
+ "loss": 1.2129,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.11270983213429256,
993
+ "grad_norm": 1.1122978925704956,
994
+ "learning_rate": 0.0001945513996749777,
995
+ "loss": 1.2605,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.1135091926458833,
1000
+ "grad_norm": 0.722235381603241,
1001
+ "learning_rate": 0.00019446867582212986,
1002
+ "loss": 1.1251,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.11430855315747403,
1007
+ "grad_norm": 1.081220030784607,
1008
+ "learning_rate": 0.00019438534656738386,
1009
+ "loss": 1.2666,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.11510791366906475,
1014
+ "grad_norm": 0.9172477722167969,
1015
+ "learning_rate": 0.0001943014124447547,
1016
+ "loss": 1.3357,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.11590727418065548,
1021
+ "grad_norm": 1.0490466356277466,
1022
+ "learning_rate": 0.0001942168739921336,
1023
+ "loss": 1.5132,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.11670663469224621,
1028
+ "grad_norm": 0.9120661020278931,
1029
+ "learning_rate": 0.00019413173175128473,
1030
+ "loss": 1.4361,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.11750599520383694,
1035
+ "grad_norm": 1.3234212398529053,
1036
+ "learning_rate": 0.0001940459862678416,
1037
+ "loss": 1.4855,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.11830535571542766,
1042
+ "grad_norm": 1.1539270877838135,
1043
+ "learning_rate": 0.00019395963809130354,
1044
+ "loss": 1.3318,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.11910471622701839,
1049
+ "grad_norm": 1.735011100769043,
1050
+ "learning_rate": 0.00019387268777503236,
1051
+ "loss": 1.1983,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.11990407673860912,
1056
+ "grad_norm": 1.8227423429489136,
1057
+ "learning_rate": 0.00019378513587624854,
1058
+ "loss": 1.3119,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.12070343725019984,
1063
+ "grad_norm": 0.38138511776924133,
1064
+ "learning_rate": 0.00019369698295602786,
1065
+ "loss": 0.972,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.12150279776179057,
1070
+ "grad_norm": 0.43561819195747375,
1071
+ "learning_rate": 0.0001936082295792978,
1072
+ "loss": 1.14,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.1223021582733813,
1077
+ "grad_norm": 0.36653220653533936,
1078
+ "learning_rate": 0.0001935188763148337,
1079
+ "loss": 1.0459,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.12310151878497202,
1084
+ "grad_norm": 0.42525514960289,
1085
+ "learning_rate": 0.00019342892373525546,
1086
+ "loss": 1.1425,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.12390087929656275,
1091
+ "grad_norm": 0.5016980767250061,
1092
+ "learning_rate": 0.00019333837241702358,
1093
+ "loss": 1.2008,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.12470023980815348,
1098
+ "grad_norm": 0.3720166087150574,
1099
+ "learning_rate": 0.00019324722294043558,
1100
+ "loss": 1.1646,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.1254996003197442,
1105
+ "grad_norm": 0.36638587713241577,
1106
+ "learning_rate": 0.0001931554758896223,
1107
+ "loss": 1.165,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.12629896083133493,
1112
+ "grad_norm": 0.34399259090423584,
1113
+ "learning_rate": 0.00019306313185254417,
1114
+ "loss": 1.1143,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.12709832134292565,
1119
+ "grad_norm": 0.3347741663455963,
1120
+ "learning_rate": 0.00019297019142098723,
1121
+ "loss": 1.3191,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.1278976818545164,
1126
+ "grad_norm": 0.3507041335105896,
1127
+ "learning_rate": 0.00019287665519055977,
1128
+ "loss": 1.1756,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.1286970423661071,
1133
+ "grad_norm": 0.33033809065818787,
1134
+ "learning_rate": 0.00019278252376068807,
1135
+ "loss": 1.1667,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.12949640287769784,
1140
+ "grad_norm": 0.3340887725353241,
1141
+ "learning_rate": 0.00019268779773461275,
1142
+ "loss": 1.2313,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.13029576338928858,
1147
+ "grad_norm": 0.32075756788253784,
1148
+ "learning_rate": 0.000192592477719385,
1149
+ "loss": 1.1771,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.1310951239008793,
1154
+ "grad_norm": 0.3003697097301483,
1155
+ "learning_rate": 0.00019249656432586247,
1156
+ "loss": 1.1086,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.13189448441247004,
1161
+ "grad_norm": 0.3765442669391632,
1162
+ "learning_rate": 0.00019240005816870554,
1163
+ "loss": 1.1488,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.13269384492406075,
1168
+ "grad_norm": 0.36099955439567566,
1169
+ "learning_rate": 0.0001923029598663733,
1170
+ "loss": 1.0357,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.1334932054356515,
1175
+ "grad_norm": 0.39176511764526367,
1176
+ "learning_rate": 0.0001922052700411196,
1177
+ "loss": 1.1446,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.1342925659472422,
1182
+ "grad_norm": 0.34224048256874084,
1183
+ "learning_rate": 0.00019210698931898903,
1184
+ "loss": 1.1375,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.13509192645883294,
1189
+ "grad_norm": 0.47467905282974243,
1190
+ "learning_rate": 0.00019200811832981298,
1191
+ "loss": 1.1266,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.13589128697042366,
1196
+ "grad_norm": 0.3941161632537842,
1197
+ "learning_rate": 0.00019190865770720553,
1198
+ "loss": 1.0618,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.1366906474820144,
1203
+ "grad_norm": 0.4337694048881531,
1204
+ "learning_rate": 0.00019180860808855945,
1205
+ "loss": 1.2431,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.1374900079936051,
1210
+ "grad_norm": 0.41343578696250916,
1211
+ "learning_rate": 0.00019170797011504206,
1212
+ "loss": 1.0933,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.13828936850519585,
1217
+ "grad_norm": 0.4007498621940613,
1218
+ "learning_rate": 0.00019160674443159122,
1219
+ "loss": 1.0775,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.13908872901678657,
1224
+ "grad_norm": 0.45554855465888977,
1225
+ "learning_rate": 0.00019150493168691094,
1226
+ "loss": 1.2463,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.1398880895283773,
1231
+ "grad_norm": 0.4255776107311249,
1232
+ "learning_rate": 0.00019140253253346768,
1233
+ "loss": 1.1902,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.14068745003996802,
1238
+ "grad_norm": 0.485417902469635,
1239
+ "learning_rate": 0.00019129954762748568,
1240
+ "loss": 1.0929,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.14148681055155876,
1245
+ "grad_norm": 0.4176875650882721,
1246
+ "learning_rate": 0.00019119597762894304,
1247
+ "loss": 1.2162,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.14228617106314947,
1252
+ "grad_norm": 0.630801260471344,
1253
+ "learning_rate": 0.00019109182320156744,
1254
+ "loss": 1.1884,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.14308553157474022,
1259
+ "grad_norm": 0.47190389037132263,
1260
+ "learning_rate": 0.00019098708501283186,
1261
+ "loss": 1.1715,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.14388489208633093,
1266
+ "grad_norm": 0.48340216279029846,
1267
+ "learning_rate": 0.0001908817637339503,
1268
+ "loss": 0.9999,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.14468425259792167,
1273
+ "grad_norm": 0.5946831107139587,
1274
+ "learning_rate": 0.0001907758600398735,
1275
+ "loss": 1.1012,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.14548361310951238,
1280
+ "grad_norm": 0.4977732002735138,
1281
+ "learning_rate": 0.0001906693746092846,
1282
+ "loss": 1.0698,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.14628297362110312,
1287
+ "grad_norm": 0.5466732382774353,
1288
+ "learning_rate": 0.00019056230812459474,
1289
+ "loss": 1.2019,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.14708233413269384,
1294
+ "grad_norm": 0.7127442955970764,
1295
+ "learning_rate": 0.0001904546612719389,
1296
+ "loss": 1.1404,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.14788169464428458,
1301
+ "grad_norm": 0.5142548680305481,
1302
+ "learning_rate": 0.00019034643474117113,
1303
+ "loss": 1.0968,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.1486810551558753,
1308
+ "grad_norm": 0.7246764898300171,
1309
+ "learning_rate": 0.00019023762922586052,
1310
+ "loss": 1.3707,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.14948041566746603,
1315
+ "grad_norm": 0.6524443030357361,
1316
+ "learning_rate": 0.00019012824542328648,
1317
+ "loss": 1.0253,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.15027977617905675,
1322
+ "grad_norm": 0.7191776633262634,
1323
+ "learning_rate": 0.00019001828403443445,
1324
+ "loss": 1.1735,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.1510791366906475,
1329
+ "grad_norm": 0.7193892598152161,
1330
+ "learning_rate": 0.00018990774576399123,
1331
+ "loss": 1.2862,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.1518784972022382,
1336
+ "grad_norm": 0.6810536980628967,
1337
+ "learning_rate": 0.00018979663132034062,
1338
+ "loss": 1.2381,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.15267785771382894,
1343
+ "grad_norm": 0.8035187125205994,
1344
+ "learning_rate": 0.0001896849414155588,
1345
+ "loss": 1.1105,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.15347721822541965,
1350
+ "grad_norm": 0.8046578764915466,
1351
+ "learning_rate": 0.00018957267676540987,
1352
+ "loss": 1.2044,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.1542765787370104,
1357
+ "grad_norm": 0.8183929920196533,
1358
+ "learning_rate": 0.00018945983808934104,
1359
+ "loss": 1.2164,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.1550759392486011,
1364
+ "grad_norm": 0.8634499907493591,
1365
+ "learning_rate": 0.00018934642611047827,
1366
+ "loss": 1.3517,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.15587529976019185,
1371
+ "grad_norm": 0.8621507287025452,
1372
+ "learning_rate": 0.00018923244155562147,
1373
+ "loss": 1.1639,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.15667466027178256,
1378
+ "grad_norm": 1.0687577724456787,
1379
+ "learning_rate": 0.00018911788515523997,
1380
+ "loss": 1.4469,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.1574740207833733,
1385
+ "grad_norm": 1.067903995513916,
1386
+ "learning_rate": 0.00018900275764346768,
1387
+ "loss": 1.4959,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.15827338129496402,
1392
+ "grad_norm": 1.2181674242019653,
1393
+ "learning_rate": 0.0001888870597580985,
1394
+ "loss": 1.3833,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.15907274180655476,
1399
+ "grad_norm": 1.323157787322998,
1400
+ "learning_rate": 0.00018877079224058165,
1401
+ "loss": 1.1393,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.15987210231814547,
1406
+ "grad_norm": 1.3424099683761597,
1407
+ "learning_rate": 0.00018865395583601667,
1408
+ "loss": 1.0496,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.1606714628297362,
1413
+ "grad_norm": 0.347412109375,
1414
+ "learning_rate": 0.000188536551293149,
1415
+ "loss": 1.0417,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.16147082334132695,
1420
+ "grad_norm": 0.41343048214912415,
1421
+ "learning_rate": 0.0001884185793643648,
1422
+ "loss": 1.4133,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.16227018385291767,
1427
+ "grad_norm": 0.3806878626346588,
1428
+ "learning_rate": 0.0001883000408056865,
1429
+ "loss": 1.2496,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.1630695443645084,
1434
+ "grad_norm": 0.43899333477020264,
1435
+ "learning_rate": 0.0001881809363767676,
1436
+ "loss": 1.2737,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.16386890487609912,
1441
+ "grad_norm": 0.34907570481300354,
1442
+ "learning_rate": 0.00018806126684088815,
1443
+ "loss": 1.1296,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.16466826538768986,
1448
+ "grad_norm": 0.4045036733150482,
1449
+ "learning_rate": 0.00018794103296494955,
1450
+ "loss": 1.0045,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.16546762589928057,
1455
+ "grad_norm": 0.34502413868904114,
1456
+ "learning_rate": 0.0001878202355194698,
1457
+ "loss": 1.132,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.16626698641087131,
1462
+ "grad_norm": 0.35705137252807617,
1463
+ "learning_rate": 0.0001876988752785786,
1464
+ "loss": 1.098,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.16706634692246203,
1469
+ "grad_norm": 0.3194409906864166,
1470
+ "learning_rate": 0.00018757695302001223,
1471
+ "loss": 1.2312,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.16786570743405277,
1476
+ "grad_norm": 0.3879018723964691,
1477
+ "learning_rate": 0.0001874544695251087,
1478
+ "loss": 1.1976,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.16866506794564348,
1483
+ "grad_norm": 0.35541602969169617,
1484
+ "learning_rate": 0.00018733142557880267,
1485
+ "loss": 1.1774,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.16946442845723422,
1490
+ "grad_norm": 0.33518531918525696,
1491
+ "learning_rate": 0.00018720782196962054,
1492
+ "loss": 1.1635,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.17026378896882494,
1497
+ "grad_norm": 0.3688577711582184,
1498
+ "learning_rate": 0.00018708365948967522,
1499
+ "loss": 1.2767,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.17106314948041568,
1504
+ "grad_norm": 0.3560887575149536,
1505
+ "learning_rate": 0.0001869589389346611,
1506
+ "loss": 1.1967,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.1718625099920064,
1511
+ "grad_norm": 0.33957144618034363,
1512
+ "learning_rate": 0.00018683366110384912,
1513
+ "loss": 1.3085,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.17266187050359713,
1518
+ "grad_norm": 0.37535560131073,
1519
+ "learning_rate": 0.00018670782680008143,
1520
+ "loss": 1.2157,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.17346123101518784,
1525
+ "grad_norm": 0.32397881150245667,
1526
+ "learning_rate": 0.00018658143682976635,
1527
+ "loss": 1.0392,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.17426059152677859,
1532
+ "grad_norm": 0.3503437638282776,
1533
+ "learning_rate": 0.00018645449200287314,
1534
+ "loss": 0.9922,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.1750599520383693,
1539
+ "grad_norm": 0.42683276534080505,
1540
+ "learning_rate": 0.000186326993132927,
1541
+ "loss": 1.1769,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.17585931254996004,
1546
+ "grad_norm": 0.39922356605529785,
1547
+ "learning_rate": 0.00018619894103700352,
1548
+ "loss": 1.1005,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.17665867306155075,
1553
+ "grad_norm": 0.41728365421295166,
1554
+ "learning_rate": 0.00018607033653572378,
1555
+ "loss": 1.0915,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.1774580335731415,
1560
+ "grad_norm": 0.39291912317276,
1561
+ "learning_rate": 0.00018594118045324887,
1562
+ "loss": 1.077,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.1782573940847322,
1567
+ "grad_norm": 0.4485253095626831,
1568
+ "learning_rate": 0.00018581147361727477,
1569
+ "loss": 1.2157,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.17905675459632295,
1574
+ "grad_norm": 0.4745635986328125,
1575
+ "learning_rate": 0.00018568121685902682,
1576
+ "loss": 1.0908,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.17985611510791366,
1581
+ "grad_norm": 0.44247376918792725,
1582
+ "learning_rate": 0.00018555041101325466,
1583
+ "loss": 1.1267,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.1806554756195044,
1588
+ "grad_norm": 0.5008323788642883,
1589
+ "learning_rate": 0.00018541905691822668,
1590
+ "loss": 1.2198,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.18145483613109512,
1595
+ "grad_norm": 0.6248694062232971,
1596
+ "learning_rate": 0.00018528715541572474,
1597
+ "loss": 0.9965,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.18225419664268586,
1602
+ "grad_norm": 0.49490827322006226,
1603
+ "learning_rate": 0.0001851547073510388,
1604
+ "loss": 1.1015,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.18305355715427657,
1609
+ "grad_norm": 0.5184933543205261,
1610
+ "learning_rate": 0.00018502171357296144,
1611
+ "loss": 1.0303,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.1838529176658673,
1616
+ "grad_norm": 0.5275668501853943,
1617
+ "learning_rate": 0.00018488817493378235,
1618
+ "loss": 1.1686,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.18465227817745802,
1623
+ "grad_norm": 0.5399007797241211,
1624
+ "learning_rate": 0.00018475409228928312,
1625
+ "loss": 1.061,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.18545163868904876,
1630
+ "grad_norm": 0.5668668746948242,
1631
+ "learning_rate": 0.00018461946649873148,
1632
+ "loss": 1.016,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.18625099920063948,
1637
+ "grad_norm": 0.5362419486045837,
1638
+ "learning_rate": 0.0001844842984248759,
1639
+ "loss": 1.1065,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.18705035971223022,
1644
+ "grad_norm": 0.6350337862968445,
1645
+ "learning_rate": 0.00018434858893394017,
1646
+ "loss": 1.124,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.18784972022382093,
1651
+ "grad_norm": 0.6309515237808228,
1652
+ "learning_rate": 0.00018421233889561765,
1653
+ "loss": 1.1816,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.18864908073541167,
1658
+ "grad_norm": 0.7365162372589111,
1659
+ "learning_rate": 0.00018407554918306582,
1660
+ "loss": 1.1626,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.18944844124700239,
1665
+ "grad_norm": 0.6940858960151672,
1666
+ "learning_rate": 0.0001839382206729007,
1667
+ "loss": 1.1132,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.19024780175859313,
1672
+ "grad_norm": 0.8325644731521606,
1673
+ "learning_rate": 0.00018380035424519115,
1674
+ "loss": 1.1165,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.19104716227018384,
1679
+ "grad_norm": 0.6918978095054626,
1680
+ "learning_rate": 0.00018366195078345327,
1681
+ "loss": 1.1739,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.19184652278177458,
1686
+ "grad_norm": 0.6650384068489075,
1687
+ "learning_rate": 0.00018352301117464473,
1688
+ "loss": 1.1282,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.1926458832933653,
1693
+ "grad_norm": 0.8843955397605896,
1694
+ "learning_rate": 0.00018338353630915915,
1695
+ "loss": 1.3603,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.19344524380495604,
1700
+ "grad_norm": 0.8808042407035828,
1701
+ "learning_rate": 0.00018324352708082032,
1702
+ "loss": 1.113,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.19424460431654678,
1707
+ "grad_norm": 1.143660068511963,
1708
+ "learning_rate": 0.00018310298438687644,
1709
+ "loss": 1.0883,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.1950439648281375,
1714
+ "grad_norm": 1.1465717554092407,
1715
+ "learning_rate": 0.00018296190912799442,
1716
+ "loss": 1.2652,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.19584332533972823,
1721
+ "grad_norm": 0.9887382984161377,
1722
+ "learning_rate": 0.00018282030220825423,
1723
+ "loss": 1.1181,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.19664268585131894,
1728
+ "grad_norm": 1.22044038772583,
1729
+ "learning_rate": 0.00018267816453514284,
1730
+ "loss": 1.3771,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.19744204636290968,
1735
+ "grad_norm": 0.9596154093742371,
1736
+ "learning_rate": 0.00018253549701954862,
1737
+ "loss": 1.1139,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.1982414068745004,
1742
+ "grad_norm": 1.6753774881362915,
1743
+ "learning_rate": 0.00018239230057575542,
1744
+ "loss": 1.3727,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.19904076738609114,
1749
+ "grad_norm": 1.4268722534179688,
1750
+ "learning_rate": 0.00018224857612143675,
1751
+ "loss": 1.2822,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.19984012789768185,
1756
+ "grad_norm": 2.222425937652588,
1757
+ "learning_rate": 0.00018210432457764982,
1758
+ "loss": 1.1959,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.2006394884092726,
1763
+ "grad_norm": 0.4086918234825134,
1764
+ "learning_rate": 0.00018195954686882972,
1765
+ "loss": 1.144,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.2014388489208633,
1770
+ "grad_norm": 0.41542449593544006,
1771
+ "learning_rate": 0.00018181424392278345,
1772
+ "loss": 1.1824,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.20223820943245405,
1777
+ "grad_norm": 0.4137241542339325,
1778
+ "learning_rate": 0.00018166841667068405,
1779
+ "loss": 1.0779,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.20303756994404476,
1784
+ "grad_norm": 0.4028993546962738,
1785
+ "learning_rate": 0.00018152206604706445,
1786
+ "loss": 1.2201,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.2038369304556355,
1791
+ "grad_norm": 0.4300652742385864,
1792
+ "learning_rate": 0.00018137519298981172,
1793
+ "loss": 1.2351,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.20463629096722621,
1798
+ "grad_norm": 0.3383592963218689,
1799
+ "learning_rate": 0.00018122779844016086,
1800
+ "loss": 0.9793,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.20543565147881696,
1805
+ "grad_norm": 0.39683791995048523,
1806
+ "learning_rate": 0.00018107988334268896,
1807
+ "loss": 1.1426,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.20623501199040767,
1812
+ "grad_norm": 0.42270147800445557,
1813
+ "learning_rate": 0.0001809314486453089,
1814
+ "loss": 1.0328,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.2070343725019984,
1819
+ "grad_norm": 0.3438531160354614,
1820
+ "learning_rate": 0.0001807824952992635,
1821
+ "loss": 1.1814,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.20783373301358912,
1826
+ "grad_norm": 0.3860226571559906,
1827
+ "learning_rate": 0.00018063302425911935,
1828
+ "loss": 1.2932,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.20863309352517986,
1833
+ "grad_norm": 0.33305105566978455,
1834
+ "learning_rate": 0.00018048303648276058,
1835
+ "loss": 1.2319,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.20943245403677058,
1840
+ "grad_norm": 0.3034221827983856,
1841
+ "learning_rate": 0.0001803325329313829,
1842
+ "loss": 1.1841,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.21023181454836132,
1847
+ "grad_norm": 0.33632907271385193,
1848
+ "learning_rate": 0.00018018151456948738,
1849
+ "loss": 1.0549,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.21103117505995203,
1854
+ "grad_norm": 0.3618718981742859,
1855
+ "learning_rate": 0.00018002998236487421,
1856
+ "loss": 1.132,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.21183053557154277,
1861
+ "grad_norm": 0.3930991590023041,
1862
+ "learning_rate": 0.00017987793728863651,
1863
+ "loss": 1.1224,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.21262989608313348,
1868
+ "grad_norm": 0.3681231439113617,
1869
+ "learning_rate": 0.00017972538031515417,
1870
+ "loss": 1.1517,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.21342925659472423,
1875
+ "grad_norm": 0.5605345368385315,
1876
+ "learning_rate": 0.0001795723124220876,
1877
+ "loss": 1.2004,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.21422861710631494,
1882
+ "grad_norm": 0.37568894028663635,
1883
+ "learning_rate": 0.00017941873459037142,
1884
+ "loss": 1.1675,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.21502797761790568,
1889
+ "grad_norm": 0.4226769208908081,
1890
+ "learning_rate": 0.0001792646478042081,
1891
+ "loss": 1.1093,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.2158273381294964,
1896
+ "grad_norm": 0.4474649131298065,
1897
+ "learning_rate": 0.00017911005305106187,
1898
+ "loss": 1.1787,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.21662669864108713,
1903
+ "grad_norm": 0.408610999584198,
1904
+ "learning_rate": 0.0001789549513216522,
1905
+ "loss": 1.0964,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.21742605915267785,
1910
+ "grad_norm": 0.4020257890224457,
1911
+ "learning_rate": 0.0001787993436099475,
1912
+ "loss": 1.0457,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.2182254196642686,
1917
+ "grad_norm": 0.479666143655777,
1918
+ "learning_rate": 0.0001786432309131588,
1919
+ "loss": 1.1873,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.2190247801758593,
1924
+ "grad_norm": 0.3813555836677551,
1925
+ "learning_rate": 0.00017848661423173326,
1926
+ "loss": 1.2765,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.21982414068745004,
1931
+ "grad_norm": 0.40289053320884705,
1932
+ "learning_rate": 0.00017832949456934798,
1933
+ "loss": 1.1429,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.22062350119904076,
1938
+ "grad_norm": 0.43944934010505676,
1939
+ "learning_rate": 0.00017817187293290318,
1940
+ "loss": 1.226,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.2214228617106315,
1945
+ "grad_norm": 0.6219374537467957,
1946
+ "learning_rate": 0.00017801375033251618,
1947
+ "loss": 1.2194,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.2222222222222222,
1952
+ "grad_norm": 0.42762303352355957,
1953
+ "learning_rate": 0.00017785512778151457,
1954
+ "loss": 0.8679,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.22302158273381295,
1959
+ "grad_norm": 0.5274598002433777,
1960
+ "learning_rate": 0.00017769600629643004,
1961
+ "loss": 1.0911,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.22382094324540366,
1966
+ "grad_norm": 0.5053704977035522,
1967
+ "learning_rate": 0.0001775363868969915,
1968
+ "loss": 1.0298,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.2246203037569944,
1973
+ "grad_norm": 0.45921552181243896,
1974
+ "learning_rate": 0.0001773762706061189,
1975
+ "loss": 1.1121,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.22541966426858512,
1980
+ "grad_norm": 0.6298018097877502,
1981
+ "learning_rate": 0.00017721565844991643,
1982
+ "loss": 1.1947,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.22621902478017586,
1987
+ "grad_norm": 0.5267609357833862,
1988
+ "learning_rate": 0.00017705455145766607,
1989
+ "loss": 1.202,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.2270183852917666,
1994
+ "grad_norm": 0.5780994892120361,
1995
+ "learning_rate": 0.0001768929506618209,
1996
+ "loss": 0.9595,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.2278177458033573,
2001
+ "grad_norm": 0.6282961964607239,
2002
+ "learning_rate": 0.00017673085709799866,
2003
+ "loss": 1.1487,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.22861710631494805,
2008
+ "grad_norm": 0.583211362361908,
2009
+ "learning_rate": 0.00017656827180497482,
2010
+ "loss": 1.051,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.22941646682653877,
2015
+ "grad_norm": 0.5974562168121338,
2016
+ "learning_rate": 0.0001764051958246762,
2017
+ "loss": 1.0361,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.2302158273381295,
2022
+ "grad_norm": 0.7136018872261047,
2023
+ "learning_rate": 0.0001762416302021742,
2024
+ "loss": 1.1316,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.23101518784972022,
2029
+ "grad_norm": 0.6994486451148987,
2030
+ "learning_rate": 0.000176077575985678,
2031
+ "loss": 1.2776,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.23181454836131096,
2036
+ "grad_norm": 0.6960222125053406,
2037
+ "learning_rate": 0.00017591303422652803,
2038
+ "loss": 1.3089,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.23261390887290168,
2043
+ "grad_norm": 0.7990922927856445,
2044
+ "learning_rate": 0.00017574800597918908,
2045
+ "loss": 1.2942,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.23341326938449242,
2050
+ "grad_norm": 0.8984624147415161,
2051
+ "learning_rate": 0.0001755824923012436,
2052
+ "loss": 1.0605,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.23421262989608313,
2057
+ "grad_norm": 0.7995984554290771,
2058
+ "learning_rate": 0.0001754164942533849,
2059
+ "loss": 1.3299,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.23501199040767387,
2064
+ "grad_norm": 0.9280282258987427,
2065
+ "learning_rate": 0.00017525001289941044,
2066
+ "loss": 1.3762,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.23581135091926458,
2071
+ "grad_norm": 0.909788966178894,
2072
+ "learning_rate": 0.00017508304930621488,
2073
+ "loss": 1.1487,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.23661071143085532,
2078
+ "grad_norm": 0.939471423625946,
2079
+ "learning_rate": 0.00017491560454378332,
2080
+ "loss": 1.0599,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.23741007194244604,
2085
+ "grad_norm": 0.9314141869544983,
2086
+ "learning_rate": 0.00017474767968518446,
2087
+ "loss": 1.3278,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.23820943245403678,
2092
+ "grad_norm": 1.094929575920105,
2093
+ "learning_rate": 0.00017457927580656366,
2094
+ "loss": 1.2823,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.2390087929656275,
2099
+ "grad_norm": 1.1693792343139648,
2100
+ "learning_rate": 0.00017441039398713608,
2101
+ "loss": 1.3312,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.23980815347721823,
2106
+ "grad_norm": 1.5119585990905762,
2107
+ "learning_rate": 0.00017424103530917976,
2108
+ "loss": 1.4299,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.24060751398880895,
2113
+ "grad_norm": 0.3461761176586151,
2114
+ "learning_rate": 0.00017407120085802873,
2115
+ "loss": 1.0737,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.2414068745003997,
2120
+ "grad_norm": 0.40149208903312683,
2121
+ "learning_rate": 0.00017390089172206592,
2122
+ "loss": 1.0599,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.2422062350119904,
2127
+ "grad_norm": 0.34392961859703064,
2128
+ "learning_rate": 0.00017373010899271636,
2129
+ "loss": 1.1225,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.24300559552358114,
2134
+ "grad_norm": 0.35481372475624084,
2135
+ "learning_rate": 0.00017355885376444007,
2136
+ "loss": 1.0724,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.24380495603517185,
2141
+ "grad_norm": 0.395998477935791,
2142
+ "learning_rate": 0.00017338712713472508,
2143
+ "loss": 1.079,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.2446043165467626,
2148
+ "grad_norm": 0.3567344546318054,
2149
+ "learning_rate": 0.00017321493020408033,
2150
+ "loss": 1.2561,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.2454036770583533,
2155
+ "grad_norm": 0.3671879768371582,
2156
+ "learning_rate": 0.0001730422640760288,
2157
+ "loss": 1.2168,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.24620303756994405,
2162
+ "grad_norm": 0.3822752833366394,
2163
+ "learning_rate": 0.00017286912985710023,
2164
+ "loss": 1.1955,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.24700239808153476,
2169
+ "grad_norm": 0.35947856307029724,
2170
+ "learning_rate": 0.00017269552865682413,
2171
+ "loss": 1.1131,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.2478017585931255,
2176
+ "grad_norm": 0.32692649960517883,
2177
+ "learning_rate": 0.00017252146158772269,
2178
+ "loss": 1.1497,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.24860111910471622,
2183
+ "grad_norm": 0.3335247337818146,
2184
+ "learning_rate": 0.00017234692976530357,
2185
+ "loss": 1.2148,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.24940047961630696,
2190
+ "grad_norm": 0.3448440134525299,
2191
+ "learning_rate": 0.00017217193430805287,
2192
+ "loss": 1.1969,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.2501998401278977,
2197
+ "grad_norm": 0.31313541531562805,
2198
+ "learning_rate": 0.00017199647633742783,
2199
+ "loss": 1.1303,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.2501998401278977,
2204
+ "eval_loss": 1.141908884048462,
2205
+ "eval_runtime": 39.7956,
2206
+ "eval_samples_per_second": 13.243,
2207
+ "eval_steps_per_second": 6.634,
2208
+ "step": 313
2209
+ }
2210
+ ],
2211
+ "logging_steps": 1,
2212
+ "max_steps": 1251,
2213
+ "num_input_tokens_seen": 0,
2214
+ "num_train_epochs": 1,
2215
+ "save_steps": 313,
2216
+ "stateful_callbacks": {
2217
+ "TrainerControl": {
2218
+ "args": {
2219
+ "should_epoch_stop": false,
2220
+ "should_evaluate": false,
2221
+ "should_log": false,
2222
+ "should_save": true,
2223
+ "should_training_stop": false
2224
+ },
2225
+ "attributes": {}
2226
+ }
2227
+ },
2228
+ "total_flos": 1.3892953531062682e+17,
2229
+ "train_batch_size": 2,
2230
+ "trial_name": null,
2231
+ "trial_params": null
2232
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3e7393cb00a5a96124e6d6e577f093ff1bec69a45c864e198533ecdd2eafc0
3
+ size 6840