--- license: apache-2.0 base_model: - mlabonne/NeuralHermes-2.5-Mistral-7B - teknium/OpenHermes-2.5-Mistral-7B tags: - merge - mergekit - lazymergekit - mistral - hermes --- # SUONG-4 (7B Parameters) This is a merge of pre-trained language models created using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing), combining the strengths of NeuralHermes and OpenHermes architectures through an optimized progressive fusion approach. ## About Me I'm David Soeiro-Vuong, a third-year Computer Science student working as an apprentice at TW3 Partners, a company specialized in Generative AI. Passionate about artificial intelligence and language models optimization, I focus on creating efficient model merges that balance performance and capabilities. 🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/david-soeiro-vuong-a28b582ba/) ## Merge Details ### Merge Method This model uses SLERP (Spherical Linear Interpolation) with a carefully tuned progressive fusion approach: - Progressive attention layer fusion (0 to 1) - Inverse MLP layer transition (1 to 0) - Global fusion ratio of 0.45 - bfloat16 format for efficient memory usage ### Models Merged * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) ### Configuration ```yaml slices: - sources: - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [0, 0.3, 0.6, 0.9, 1] - filter: mlp value: [1, 0.7, 0.4, 0.1, 0] - value: 0.45 dtype: bfloat16