Davidsv commited on
Commit
46ef7d8
·
verified ·
1 Parent(s): 39a75b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -23
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  base_model:
3
  - openlm-research/open_llama_7b
4
  - stabilityai/StableBeluga-7B
@@ -6,17 +7,38 @@ tags:
6
  - merge
7
  - mergekit
8
  - lazymergekit
9
- - openlm-research/open_llama_7b
10
- - stabilityai/StableBeluga-7B
 
11
  ---
12
 
13
  # OpenLlama-Stable-7B
14
 
15
- OpenLlama-Stable-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
16
- * [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)
17
- * [stabilityai/StableBeluga-7B](https://huggingface.co/stabilityai/StableBeluga-7B)
 
 
 
 
 
 
 
 
18
 
19
- ## 🧩 Configuration
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ```yaml
22
  slices:
@@ -40,27 +62,57 @@ parameters:
40
  dtype: bfloat16
41
  ```
42
 
43
- ## 💻 Usage
44
 
45
- ```python
46
- !pip install -qU transformers accelerate
 
 
47
 
48
- from transformers import AutoTokenizer
49
- import transformers
50
- import torch
 
 
51
 
52
- model = "Davidsv/OpenLlama-Stable-7B"
53
- messages = [{"role": "user", "content": "What is a large language model?"}]
54
 
55
- tokenizer = AutoTokenizer.from_pretrained(model)
56
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
57
- pipeline = transformers.pipeline(
58
- "text-generation",
59
- model=model,
 
 
 
60
  torch_dtype=torch.float16,
61
- device_map="auto",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  )
63
 
64
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
65
- print(outputs[0]["generated_text"])
66
- ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  base_model:
4
  - openlm-research/open_llama_7b
5
  - stabilityai/StableBeluga-7B
 
7
  - merge
8
  - mergekit
9
  - lazymergekit
10
+ - open_llama
11
+ - StableBeluga
12
+ - slerp
13
  ---
14
 
15
  # OpenLlama-Stable-7B
16
 
17
+ This is a merge of pre-trained language models created using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing), combining the foundational capabilities of OpenLM's Open Llama with StabilityAI's StableBeluga through an efficient SLERP fusion.
18
+
19
+ ## About Me
20
+
21
+ I'm David Soeiro-Vuong, a third-year Computer Science student working as an apprentice at TW3 Partners, a company specialized in Generative AI. Passionate about artificial intelligence and language models optimization, I focus on creating efficient model merges that balance performance and capabilities.
22
+
23
+ 🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/david-soeiro-vuong-a28b582ba/)
24
+
25
+ ## Merge Details
26
+
27
+ ### Merge Method
28
 
29
+ This model uses SLERP (Spherical Linear Interpolation) with carefully tuned parameters to achieve optimal performance balance:
30
+
31
+ - **Attention Layers**: 0.7 interpolation value favoring StableBeluga's strong instruction-following capabilities
32
+ - **MLP Layers**: 0.5 interpolation value creating an equal blend for balanced reasoning
33
+ - **Other Parameters**: 0.6 interpolation value slightly favoring StableBeluga's refinements
34
+ - **Format**: bfloat16 precision for efficient memory usage
35
+
36
+ ### Models Merged
37
+
38
+ * [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) - An open-source reproduction of Meta's LLaMA that offers strong base capabilities
39
+ * [stabilityai/StableBeluga-7B](https://huggingface.co/stabilityai/StableBeluga-7B) - StabilityAI's instruction-tuned variant offering improved instruction following and coherence
40
+
41
+ ### Configuration
42
 
43
  ```yaml
44
  slices:
 
62
  dtype: bfloat16
63
  ```
64
 
65
+ ## Model Capabilities
66
 
67
+ This merge combines:
68
+ - Open Llama's strong foundational knowledge and reasoning
69
+ - StableBeluga's improved instruction following and coherence
70
+ - Fully open architecture with no usage restrictions
71
 
72
+ The resulting model provides enhanced performance on tasks requiring both strong reasoning and good instruction following, such as:
73
+ - Detailed explanations of complex concepts
74
+ - Creative writing with coherent structure
75
+ - Problem-solving with step-by-step reasoning
76
+ - Balanced factual responses with nuanced perspectives
77
 
78
+ ## Usage
 
79
 
80
+ ```python
81
+ from transformers import AutoTokenizer, AutoModelForCausalLM
82
+ import torch
83
+
84
+ model_id = "david-sv/OpenLlama-Stable-7B" # Replace with your actual HF username
85
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
86
+ model = AutoModelForCausalLM.from_pretrained(
87
+ model_id,
88
  torch_dtype=torch.float16,
89
+ device_map="auto"
90
+ )
91
+
92
+ # For chat completions
93
+ prompt = """<human>: Explain the concept of spherical linear interpolation (SLERP) and why it's useful for merging language models.
94
+
95
+ <assistant>:"""
96
+
97
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
98
+ output = model.generate(
99
+ inputs["input_ids"],
100
+ max_new_tokens=512,
101
+ temperature=0.7,
102
+ top_p=0.9,
103
+ repetition_penalty=1.1
104
  )
105
 
106
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
107
+ ```
108
+
109
+ ## Limitations
110
+
111
+ - Inherits limitations from both base models
112
+ - May exhibit inconsistent behavior for certain complex reasoning tasks
113
+ - No additional alignment or fine-tuning beyond the base models' training
114
+ - Model was created through parameter merging without additional training data
115
+
116
+ ## License
117
+
118
+ This model is released under the Apache 2.0 license, consistent with the underlying models' licenses.